
Oracle® Banking Digital Experience
Extensibility Guide

Release 25.1.0.0.0
G38590-01
July 2025

Oracle Banking Digital Experience Extensibility Guide, Release 25.1.0.0.0

G38590-01

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Purpose vi

Audience vi

Documentation Accessibility vi

Critical Patches vi

Diversity and Inclusion vii

Conventions vii

Related Resources vii

Screenshot Disclaimer vii

Acronyms and Abbreviations vii

1 Objective and Scope

1.1 Background 1-1

1.2 Objective 1-1

1.3 Scope 1-2

1.4 Structure 1-3

2 Architecture of GUI Tier

3 Extensible Points in Service Tier

3.1 REST Tier 3-1

3.1.1 Guidelines 3-2

3.1.2 HTTP Standards 3-2

3.2 Service Extensions 3-3

3.2.1 Service Extension Interface 3-5

3.2.2 Service Extension Executor Interface 3-6

3.2.3 Default Extension (Void Extension) 3-7

3.2.4 Custom Extension 3-8

3.2.5 Service Extension Configurations 3-9

3.2.6 Sequence of events in service extension 3-10

3.3 Business Policy 3-10

iii

3.3.1 Adding new business policy 3-11

3.3.2 Extending existing business policy 3-15

3.4 Dictionary 3-16

3.5 Domain Extensions 3-18

3.5.1 Custom Domain Objects 3-18

3.5.2 Adding New Domain 3-23

3.6 Error Messages 3-24

3.6.1 Adding Error Message 3-24

3.6.2 Mapping Host Error Code To OBDX Error Code 3-25

3.7 Adapter Tier 3-25

3.7.1 Service Provider Interface (SPI) Approach 3-25

3.7.2 Adding a custom adapter 3-29

3.7.3 Host adapter extension to populate pagination informations 3-31

3.8 Outbound web service extensions 3-32

3.9 Security Customizations 3-35

3.9.1 Out of box seeding of policies 3-35

3.10 Taxonomy Validations 3-36

3.11 Authentication Extensibility 3-36

3.12 Miscellaneous 3-36

3.12.1 Task Configurations 3-36

4 Extensible Points in Approval

4.1 Adding New Rule Criteria 4-1

4.1.1 Adding New Rule Criteria 4-1

4.1.2 Implementing a Rule Criteria Handler 4-2

4.1.3 Registering a Rule Criteria Handler 4-2

5 Architecture of Service Tier

6 Extensible Points in GUI Tier

6.1 Theme and Brand 6-1

6.2 Component Extensibility 6-1

6.2.1 Adding New And Overriding Existing Components 6-1

6.2.2 Add / Modify Validations 6-2

6.3 Calling custom REST service 6-3

7 Libraries

7.1 OBDX Libraries 7-1

iv

7.1.1 Core/Framework Libraries 7-1

7.1.2 Common Library 7-2

7.1.3 Modules 7-2

7.1.4 External System Adapters 7-4

8 Digx Scheduler Application

8.1 Create New Scheduler Class 8-1

8.2 Configure Scheduler Class 8-2

9 Consistent UI Download

9.1 Implement IPaginable and add XmlRootElement annotation on Response Object 9-1

9.2 Add configurations in the Metadata Tables 9-3

9.3 Custom Datatypes for Report Download 9-5

9.4 Adding content before and after table in PDF Reports 9-6

10

Package and Deploy Customisations

10.1 Base product packaging 10-1

10.2 Customisation packaging 10-2

10.2.1 Customizations in existing service layer without the need to expose a new
customized REST endpoint 10-2

10.2.2 Customizations to add new war 10-5

11

Messaging System Integration for OBDX

11.1 Overview 11-1

11.2 Kafka 11-1

11.2.1 New Topic Creation With Producer and Consumer 11-1

11.2.2 Kafka Producer/Consumer Configurations 11-8

11.3 JMS 11-9

11.4 Consuming New External Kafka Events 11-11

Index

v

Preface

• Purpose

• Audience

• Documentation Accessibility

• Critical Patches

• Diversity and Inclusion

• Conventions

• Related Resources

• Screenshot Disclaimer

• Acronyms and Abbreviations

Purpose
This guide is designed to help acquaint you with the Oracle Banking application. This guide
provides answers to specific features and procedures that the user need to be aware of the
module to function successfully.

Audience
This document is intended for the following audience:

• Customers

• Partners

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Critical Patches
Oracle advises customers to get all their security vulnerability information from the Oracle
Critical Patch Update Advisory, which is available at Critical Patches, Security Alerts and

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/security-alerts/

Bulletins. All critical patches should be applied in a timely manner to ensure effective security,
as strongly recommended by Oracle Software Security Assurance.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an
action, or terms defined in text or the
glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within
a paragraph, URLs, code in examples, text
that appears on the screen, or text that you
enter.

Related Resources
For more information on any related features, refer to the following documents:

• Oracle Banking Digital Experience Installation Manuals

• Oracle Banking Digital Experience Licensing Manuals

Screenshot Disclaimer
Personal information used in the interface or documents is dummy and does not exist in the
real world. It is only for reference purposes; actual screens that appear in the application may
vary based on selected browser, theme, and mobile devices.

Acronyms and Abbreviations
The list of the acronyms and abbreviations used in this guide are as follows:

Preface

vii

https://www.oracle.com/security-alerts/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/

Table 1 Acronyms and Abbreviations

Abbreviation Description

OBDX Oracle Banking Digital Experience

Preface

viii

1
Objective and Scope

• Background
This topic provides information on Background.

• Objective
This topic provides information on Objective.

• Scope
This topic provides information on Scope.

• Structure
This topic provides information on Structure.

1.1 Background
This topic provides information on Background.

OBDX is designed to help banks respond strategically to today’s business challenges, while
also transforming their business models and processes to reduce operating costs and improve
productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverage Oracle Fusion experience across its core banking operations across its retail and
corporate offerings.

OBDX provides a unified yet scalable IT solution for a bank to manage its data and end-to-end
business operations with an enriched user experience. It comprises pre-integrated enterprise
applications leveraging and relying on the underlying Oracle Technology Stack to help reduce
in-house integration and testing efforts.

1.2 Objective
This topic provides information on Objective.

While most product development can be accomplished via highly flexible system parameters
and business rules, further competitive differentiation can be achieved via IT configuration &
extension support. Time consuming, custom coding to enable region specific, site specific or
bank specific customizations can be minimized by offering extension points and customization
support which can be implemented by the bank and / or by partners.

Extensibility objective

OBDX when extended & customized by the Bank and / or Partners results in reduced
dependence on Oracle. As a result of this, the Bank does not have to align plans with Oracle’s
release plans for getting certain customizations or product upgrades. The bank has the
flexibility to choose and do the customizations themselves or have them done by partners.

One of the key considerations towards enabling extensibility in OBDX has been to ensure that
the developed software can respond to future growth. This has been achieved by disciplined
software development leading to cleaner dependencies, well defined interfaces and
abstractions with corresponding reduction in high cohesion & coupling. Hence, the extensions
are kept separate from Core – Bank can take advantage of OBDX Core upgrades as most
extensions done for a previous release can sit directly on top of the upgraded version. This

1-1

reduces testing effort thereby reducing overall costs of planning & taking up an upgrade. This
would also improve TTM significantly as the bank enjoys the advantage of getting universal
features through upgrades.

The broad guiding principles w.r.t. providing extensibility in OBDX are summarized below:

• Strategic intent for enabling customers and partners to extend the application.

• Internal development uses the same principles for client specific customizations.

• Localization packs.

• Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

• Extensions through the addition of new functionality or modification of existing functionality.

• Planned focus on this area of the application.

• Standards based.

• Leverage large development pool for standards based technology.

• Developer tool sets provided for as part of JDeveloper and Eclipse for productivity.

1.3 Scope
This topic provides information on Scope.

The scope of this document is to explain the customization & extension of OBDX for the
following use cases:

• Customizing OBDX application services and implement composite application services

• Adding pre-processing or post processing validations in the application services extension

• Adding Business Logic in pre hook or post hook points in the application services
extension

• Altering the product behavior at customizations hooks provided as adapter calls in
functional areas that are prone to change and in between modules that can be replaced
(e.g. alerts, content management)

• Adding new fields to the OBDX domain model and including it on the corresponding
screen.

• Defining the security related access and authorization policies

• Defining different security related rules, validator and processing logics

• Customizing OBDX UI

• Adding a new field or a table on the screen

• Removing fields from the UI

This document would be a useful tool for Oracle Consulting, bank IT and partners for
customizing and extending the product.

The document is a developer’s extensibility guide and does not intend to work as a
replacement of the functional specification which would be the primary resource covering the
following:

• OBDX installation & configuration.

• OBDX parameterization as part of implementation.

• Functional solution and product user guide.

Chapter 1
Scope

1-2

Out of scope

The scope of extensibility does not intend to suggest that OBDX is forward compatible.

1.4 Structure
This topic provides information on Structure.

This document is organized into following chapters:

• Architecture of Service Tier: Provides overall architecture of the service tier of OBDX
platform. This chapter will set the context for further chapters and also will introduce you to
various terminologies that you will encounter throughout this document

• Extensible Points in Service Tier: Provides in depth knowledge about various extensible
hooks available in the service tier.

• Architecture of GUI Tier: Provides overall architecture of the GUI tier of OBDX platform.
This chapter will introduce you to various terminologies that you will encounter for UI
extensibility.

• Extensible points in GUI Tier: Provides in depth knowledge about various extensible hooks
available in the GUI tier.

• Libraries: Provides a listing of various libraries provided by OBDX out of the box along with
their usage

• Workspace Setup: Provides step by step guidelines for setting up Eclipse workspace for
extensibility

• Deployment: Provides information in packaging and deployment of the customized code on
Weblogic server

• GUI Tier: Workspace Setup: Provides step by step guidelines for setting up workspace for
GUI tier extensibility

• GUI Tier: Deployment: Provides information on packaging and deployment of customized
GUI code on HTTP server

• Use Cases: This chapter discusses some of the extensibility points covered in earlier
chapters with the help of some use cases.

Chapter 1
Structure

1-3

2
Architecture of GUI Tier

This topic provides information on Architecture of GUI Tier.

Below diagram shows structure of the UI artifacts and some of the important artifacts are
explained subsequently.

2-1

3
Extensible Points in Service Tier

This topic provides information on Extensible Points in Service Tier. Various extensible
points / hooks provided by OBDX framework, are explained in detail in this section.

• REST Tier
This topic provides information on REST Tier.

• Service Extensions
This topic provides information on Service Extensions.

• Business Policy
This topic provides information on Business Policy.

• Dictionary
This topic provides information on Dictionary.

• Domain Extensions
This topic provides information on Domain Extensions.

• Error Messages
This topic provides information on Error Messages.

• Adapter Tier
This topic provides information on Adapter Tier.

• Outbound web service extensions
This topic provides information on Outbound web service extensions.

• Security Customizations
This topic provides information on Security Customizations.

• Taxonomy Validations
This topic provides information on Taxonomy Validations. For extensions in taxonomy
validations, please refer to Oracle Banking Digital Experience Taxonomy
Configuration Guide

• Authentication Extensibility
This topic provides information on Authentication Extensibility.

• Miscellaneous
This topic provides information on Miscellaneous.

3.1 REST Tier
This topic provides information on REST Tier.

Customization developer can extend the REST tier by writing new REST services. This new
REST service will consume new or existing application service. Please note that it is not
possible to customize the REST services provided out of the box. Extensibility in REST tier is
limited to writing new services.

3-1

References:

Please refer to workspace setup of DTO (xface) and REST service.

Please refer to Use case 1 for steps to write new REST service along with sample code.

• Guidelines
This topic provides information on Guidelines.

• HTTP Standards
This topic provides information on HTTP Standards.

3.1.1 Guidelines
This topic provides information on Guidelines.

• OBDX REST tier follows façade pattern, meaning that it is just an endpoint built on top of
application service(s).

• A REST service should not have any business logic. It should consume one or more
application services and prepare the response.

• Before coding a new REST service, developer should decide the resource(s) and sub-
resources(s) that s/he needs to develop. Based on this, the developer can design required
URIs. E.g. A ‘Demand Deposit Account’ is a resource in the system and /accounts/
demandDeposit/{accountId} is the REST URI to access it.

• The service should be annotated suitably using JAX-RS annotations.

• The service should wrap its operation in ‘Channel Interaction’.

• The service should use adequate logging.

3.1.2 HTTP Standards
This topic provides information on HTTP Standards.

HTTP Methods

OBDX resources support following HTTP methods. New services also should use these
methods appropriately.

For more information on fields, refer to the field description table.

Table 3-1 HTTP Methods

Method Purpose

GET Retrieve / fetch the resource

POST Create a new resource

Chapter 3
REST Tier

3-2

Table 3-1 (Cont.) HTTP Methods

Method Purpose

PUT Update / modify an existing resource. The payload is expected to have
full resource.

PATCH Update / modify very small part of an existing resource. The payload is
expected to have only the fields to be updated.

DELETE Delete a resource

HTTP Response Codes

Following HTTP response codes are used. New REST services should return appropriate
response code based on result of the operation.

For more information on fields, refer to the field description table.

Table 3-2 HTTP Response Codes

Code Status Description

200 OK Request successfully executed and the response has content

201 Created Resource successfully created

202 Accepted Request has been accepted for processing but processing has
not been completed

204 No Content Request successfully executed and the response doesn't have
content

304 Not Modified The resource has not been modified for a conditional GET
request

400 Bad Request The request could not be understood by the server due to
malformed syntax

401 Unauthorized The request requires user authentication, or authorization has
been refused for the credential passed in the request

404 Not Found The requested resource was not found

500 Internal Server Error The server encountered an unexpected condition which
prevented it from fulfilling the request

3.2 Service Extensions
This topic provides information on Service Extensions.

This extension point should be used when the customization developer needs additional
business logic for an application service. This additional logic, which is not available as part of
the digital experience product functionality, but could be a client requirement. For these
purposes, two hooks are provided in the application code:

Pre-extension hook

This extension point is available in application service before it performs any validations and
executes business logic. This hook can be important in the following scenarios:

• Additional input validations

• Execution of business logic, which necessarily has to happen before going ahead with
normal service execution.

Chapter 3
Service Extensions

3-3

Post-extension hook

This extension point is available in the application service after it has executed business logic.
This hook can be important in the following scenarios:

• Output response manipulation

• Custom data logging for subsequent processing or reporting.

Both ‘pre’ and ‘post’ service extensions are available in the application service layer (also
known as the ‘app’ layer) of OBDX.

This hook in implemented using service extension executor and service extensions. These
components are explained in detail below. Customization developer can use these
components suitably based on the requirement.

Below class diagram depicts the relationship between application service, extension executor
and extensions. The diagram considers a sample ‘create’ method in application service.

Note:

The RequestDTO and ResponseDTO components depicted in above diagram are
explained in subsequent sections. For now, note that the RequestDTO contains
inputs to the application service method and ResponseDTO contains output
generated by the method.

• Service Extension Interface
This topic provides information on Service Extension Interface.

• Service Extension Executor Interface
This topic provides information on Service Extension Executor Interface.

• Default Extension (Void Extension)
This topic provides information on Default Extension (Void Extension).

Chapter 3
Service Extensions

3-4

• Custom Extension
This topic provides information on Custom Extension.

• Service Extension Configurations
This topic provides information on Service Extension Configurations.

• Sequence of events in service extension
This topic provides information on Sequence of events in service extension.

3.2.1 Service Extension Interface
This topic provides information on Service Extension Interface.

This interface has a pair of pre and post method definitions for each application service method
of the present. A service extension class has to implement this interface. The ‘pre’ method is
the pre-extension hook as explained before. Similarly the ‘post’ method is the post-extension
hook.

Multiple implementations can be defined for a particular service. The service extensions
executor invokes all the implementations defined for the particular service both before and
after the actual service executes. The signatures of these methods are:

public void pre<Method_Name>(SessionContext, <Method_Parameters>) throws
Exception;
public void post<Method_Name>(SessionContext, <Method_Parameters>, ResponseDTO)
throws Exception;
Naming Convention

The naming convention of service extension interface is

I<Service_Name>Ext
For example, consider below code sample.

Chapter 3
Service Extensions

3-5

3.2.2 Service Extension Executor Interface
This topic provides information on Service Extension Executor Interface.

This acts as an interface for the application service to access service extensions. The
implementing class creates an instance each of all the extensions defined in the service
extensions configuration file. If no extensions are defined for a particular service, the executor
creates an instance of the default extension for the service. The executor also has a pair of pre
and post methods for each method of the actual service. These methods in turn call the
corresponding methods of all the extension classes defined for the service (extension
chaining).

Naming convention

The naming convention for extension executor class is as below:

Interface : I<Service_Name>ExtExecutor
Implementation : <Service_Name>ExtExecutor
For example, consider below code sample.

Chapter 3
Service Extensions

3-6

3.2.3 Default Extension (Void Extension)
This topic provides information on Default Extension (Void Extension).

This class, named as Void<Service_Name>Ext, is provided out of the box for each application
service. This class implements the aforementioned service extension interface without any
business logic viz. the implemented methods are empty.

The default extension is a useful & convenient mechanism to implement the pre and / or post
extension hooks for specific methods of an application service. Instead of implementing the
entire interface, one should extend the default extension class and override only required
methods with the additional business logic. Product developers do not implement any logic,
including product extension logic, inside the default extension classes.

For example

Chapter 3
Service Extensions

3-7

3.2.4 Custom Extension
This topic provides information on Custom Extension.

Below is an example of customized service extension class that implements methods of
application service extension interface. This class contains pre hook and post hook point for
the service. The pre method of this customized extension is executed before the actual service
method and the post method of this is executed after the service method.

Chapter 3
Service Extensions

3-8

Note:

The concept of ‘Dictionary’ is explained in detail in subsequent section.

3.2.5 Service Extension Configurations
This topic provides information on Service Extension Configurations.

Set the property id and the property values in the digx_fw_config_all_b table. The property id
will be the fully qualified name of the service and the value will be the fully qualified name of
the custom extension created.

insert into digx_fw_config_all_b
(PROP_ID, CATEGORY_ID, PROP_VALUE, FACTORY_SHIPPED_FLAG, PROP_COMMENTS,
SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE,
OBJECT_STATUS_FLAG, OBJECT_VERSION_NUMBER)
values 'com.ofss.digx.app.origination.service.submission.applicant.Applicant',
'ServiceExtensionsConfig',
'com.ofss.digx.app.origination.service.submission.application.ext.
CustomLoanApplicationExtension','N', 'asdf', 'asdf', 'asdf', '', 'asdf', '',
'Y', 1);

Chapter 3
Service Extensions

3-9

3.2.6 Sequence of events in service extension
This topic provides information on Sequence of events in service extension.

Every application service method has a standard set of framework method calls as shown in
the sequence diagram below:

The pre hook is provided after the invocation of fetchTransactionStatus call inside the
application service. At this step, the current task code is received , any additional manipulation
of the input received from the User interface channel can be done in the pre hook. Apart from
this additional data coming from the screen specific to client requirements can be handled in
the pre hook.

The post hook is provided after the business logic corresponding to the application service
invoked has executed and before the successful execution of the entire service is marked in
the status object. This ensures that the status marking takes into consideration any execution
failures of post hook prior to reporting the result to the calling source. Both, the pre and the
post hooks accept the service input parameters as the inputs. The post hook also accepts the
Response parameter as the input.

3.3 Business Policy
This topic provides information on Business Policy.

OBDX supports three types of validations

DTO field validations: These are the field level validations such as syntax check of the input.
These validations are achieved by using field level annotations in request DTO. These
validations are not available for extension. Below is the list of out of box annotations available

Chapter 3
Business Policy

3-10

For more information on fields, refer to the field description table.

Table 3-3 Field Level Annotation

Annotation Description

@Email This annotation is used to validate the respective field with email regular-
expression. If the field doesn't satisfy the mentioned regular-expression then
the respective error code is thrown

@Mandatory This annotation marks the fields as mandatory. Once marked, if the field is null
then respective error-code is thrown

Eg. @Mandatory(errorCode =
DemandDepositErrorConstants.DDA_MANDATORY_ACCOUNT_ID)
private Account accountId;

@Length This annotation marks the lengths of the fields. Once marked, if the validation
is violated then the respective error code is thrown.

Eg. @Length(min = 2, max = 20, errorCode =
PartyErrorConstants.PI_LENGTH_EXTERNAL_REF_ID)

@NonNegative This annotation checks that the value is non-negative

@Regex This annotation checks if the value matches regular expression provided

System Constraints: System performs these checks mandatorily. It is not possible to override
or bypass these checks.

Business Policies: These are typically the business validations required to be performed
before executing business logic. OBDX framework allows customization developer to override
business policies as per the requirement.

• Adding new business policy
This topic provides information on Adding new business policy.

• Extending existing business policy
This topic provides information on Extending existing business policy.

3.3.1 Adding new business policy
This topic provides information on Adding new business policy.

Customization developer can add new business policy for new or existing services. System
support multiple business policies for a single service.

Following are the steps to add a new business policy:

1. Create new business policy DTO. This DTO is supposed to encapsulate all the input fields
upon which validation is to be performed.

2. Steps for creating a new business policy class:

a. BusinessPolicy class must have constructor which accepts one parameter of type
IBusinessPolicyDTO.

b. BusinessPolicy class must also have a default no-args constructor.

c. BusinessPolicy class must extend
com.ofss.fc.framework.domain.policy.AbstractBusinessPolicy.

d. BusinessPolicy class must implement the validatePolicy() method.

Chapter 3
Business Policy

3-11

method should have the validation logic and if the validation fails, then it should call
addValidationError() method with a new instance of ValidationError as parameter. One
of the parameter to the constructor of ValidationError is error code. A new error could
be added by following guidelines provided in Error Messages section.

Below are the annotations used while creating a new business policy

For more information on fields, refer to the field description table.

Table 3-4 Annotations

Annotation Description

@Custom The @Custom Annotation signifies that the business policy is
customization from the vendor, this is mandatory for every new
business policy created by the vendor. In any of the Custom
business policy if overrideAll is set to true, then it will make sure
no base business policy will be loaded for all services mentioned
in @TargetService of that custom business policy.

@TargetServices The @TargetServices annotation must include all the
@TargetService that the business policy needs to target.

@TargetService Each TargetService must include a serviceID (String) specifying
the service intended for the current Business Policy. It can
optionally include @Priority annotation.

@Priority The Priority annotation is optional and defaults to a value of 100.
If a different value is desired for a service, then the Priority should
be explicitly set.

3. The @Priority annotation is used to give a priority to the business policy for a particular
service. The business policies are executed in order of lower to higher priority for a given
service. If a new Custom BusinessPolicy is created by giving appropriate priority in the
@TargetServices desired order of execution can be achieved. Please note that a
@Custom business policy that targets the same service and has the same priority as
@Base business policy will override and suppress the @Base business policy.

4. Use of isPolicyToBeValidated() method
In case multiple business policies configured for one service then policy execution can be
controlled by overriding isPolicyToBeValided() method in CustomBusinessPolicy class.

By default, all Business Policies configured service provider configurator file in META-INF/
services will be executed as isPolicyToBeValidated() method in AbstractBusinessPolicy will
always return true given that @Priority of all businesspolicies are configured properly.To
control the business policy validation based on data check, please override method
isPolicyToBeValidated() in your BusinessPolicyClass.

5. Configure new business policy(s). To Configure a new Business policy we have to add
an entry of the fully-qualified name of the new business policy in META-
INF\services\com.ofss.fc.framework.domain.policy.AbstractBusinessPolicy file.

Let us understand how to create Custom business policies with example If we want to create a
business policy “CustomBusinessPolicyFirst” that should target the service
“com.ofss.digx.app.payment.service.payee.v3.InternationalPayee.create”

Chapter 3
Business Policy

3-12

Now that we have created a new Business Policy, we have to register it by adding the business
policies fully-qualified-name inside the META-INF/services/
com.ofss.fc.framework.domain.policy.AbstractBusinessPolicy

The @Priority annotation stores the priority of the business policy for a particular service, this
determines in which order the business policies mapped to a service will execute. The
@Priority annotation is optional if only one business policy is mapped to a service, but if
multiple business policies are mapped to a single service then the @Priority annotation with
unique values is mandatory, if not used as per instructions it can lead to unexpected behaviour.
The default value for @Priority is 100.

Let us consider that we have to add a new business policy “CustomBusinessPolicySecond”
which will target the service
“com.ofss.digx.app.payment.service.payee.v3.InternationalPayee.create”, now we know that
there is already a business policy “CustomBusinessPolicyFirst” mapped to the given service
with default priority of 100. Now as per requirement if we want the
“CustomBusinessPolicySecond” to be executed before or after “CustomBusinessPolicyFirst”
we can assign priority less than 100 or greater than 100 respectively.

Now as we have given Priority value higher than “CustomBusinessPolicySecond”,
“CustomBusinessPolicyFirst” will execute first.

respective entries in META-INF/services/
com.ofss.fc.framework.domain.policy.AbstractBusinessPolicy must be made as explained
above. Suppose if we want “CustomBusinessPolicyFirst” to also target service
“com.ofss.digx.app.payment.service.payee.v3.InternationalPayee.update” we can just simply
add it as a @TargetService

Now lets understand how we can override and supress base business policies as per
customization requirements.Lets consider these base policies for this example

CreateInternationalPayeeBankDetailsBusinessPolicy

CreateInternationalPayeeSwiftBankBusinessPolicy

Chapter 3
Business Policy

3-13

CreateInternationalPayeeNationalClearingBankBusinessPolicy

Suppose we want to suppress CreateInternationalPayeeBankDetailsBusinessPolicy for this
service com.ofss.digx.app.payment.service.payee.v3.InternationalPayee.create , this can be
done by creating a separate @Custom business policy having an empty implementation and
the target service should be the services that needs to be suppressed , also the priority given
should be similar to the one in the @Base business policy for it to work accurately.

@CUSTOM business policies that target the same service as the @Base business policy
with the same priority will override and suppress the @Base business policy

For Example:

In The Below example the Business Policy CustomBusinessPolicy will supress
CreateInternationalPayeeBankDetailsBusinessPolicy for the service
"com.ofss.digx.app.payment.service.payee.v3.InternationalPayee.create"

Now the business policy CustomBusinessPolicy will be called instead of
CreateInternationalPayeeBankDetailsBusinessPolicy , this could be used to suppress the
business policies.

Suppose if we also want to Suppress/Override the existing
CreateInternationalPayeeSwiftBankBusinessPolicy for service
“com.ofss.digx.app.payment.service.payee.v3.InternationalPayee.create”, then we can simply
add it as a @TargetService in CustomBusinessPolicy

Let us assume there is a situation where there are 4 base business policies A,B,C,D that target
services S1 and S2, suppose there is customization requirement to suppress all the base
business policies of services S1 and S2, so instead of using the above mentioned method of
overriding business policies there is an easier alternative available for this particular use case,
we can set the overrideAll as true in @Custom, this will enable us to override all the base
business policies of the services mentioned in @TargetService annotation.

Chapter 3
Business Policy

3-14

The class diagram for new custom business policy.

3.3.2 Extending existing business policy
This topic provides information on Extending existing business policy.

OBDX provides out of box business policies for all services. If only a part of the validation is to
be modified or a new validation is to be added in addition to the validations that the existing
business policy does, then it is possible to extend existing business policy and override
existing validation.

Please note that this capability depends on how the original business policy is coded. If the out
of box business performs all its validations in validatePolicy() method, then this approach may
not be useful. On the other hand, if the out of box business policy has separate individual
methods for validations and validatePolicy() method calls these methods one by one, then
extension of the business policy is useful.

As we are creating a new business policy extending the existing business policy, it is also
required to note that if the existing business policy needs to be suppressed and new business
policy should work for a particular service then steps mentioned in earlier section for
suppressing a business policy should be followed.

The steps to be followed as same as mentioned in earlier section, except the difference that
the custom business policy class will extend the out of box business policy class and override
its methods as per the requirement.

Chapter 3
Business Policy

3-15

3.4 Dictionary
This topic provides information on Dictionary.

Dictionary is not an extension point in itself, but it plays an important role in enabling
extensibility of domain. Hence, it is worth understanding the ‘Dictionary’ before proceeding to
subsequent sections

Data transfer object (DTO)

Data transfer object (DTO) is a design pattern used to transfer data between an external
system and the application service. All the information may be wrapped in a single DTO
containing all the details and passed as input request as well as returned as an output
response. The client can then invoke accessory (or getter) methods on the DTO to get the
individual attribute values from the Transfer Object. All request response classes in OBDX
application services are modelled as data transfer objects.

Dictionary

All data transfer objects extend a base class DataTransferObject which holds an array of
Dictionary object. The Dictionary encapsulates an array of NameValuePairDTO which is used to
pass data of custom data fields or attributes from the UI layer to the host middleware.

Below class diagram shows the relationship between these classes.

Chapter 3
Dictionary

3-16

Dictionary class looks like

Following image shows use of dictionary with NameValuePairDTO and added it to the Data
Transfer Object.

Chapter 3
Dictionary

3-17

3.5 Domain Extensions
This topic provides information on Domain Extensions.

The Domain layer is a central layer in designing entities in OBDX. The design philosophy is
called domain driven design. In this, the domain object (also referred as ‘entity’ in OBDX
context) is central to the design. The domain captures all attributes of the real time entity that it
models.

OBDX provides infrastructure to customize existing domains. It also allows to add new
domains.

• Custom Domain Objects
This topic provides information on Custom Domain Objects.

• Adding New Domain
This topic provides information on Adding New Domain.

3.5.1 Custom Domain Objects
This topic provides information on Custom Domain Objects.

OBDX framework (leveraging undelaying OBP infrastructure) provides a standard mechanism
to customize the domain objects that are provided out of the box. The Dictionary object plays
an important role in this mechanism.

This section describes how consultants or other third parties can extend domain and achieve
Extensibility. This provides true domain model extension capabilities by allowing addition of
custom data fields to the underlying domain objects.

Chapter 3
Domain Extensions

3-18

Translating Dictionary data into custom domain object

If dictionary is added to DTO then it is necessary to get customized domain Object which
extends base Domain Object. Method getCustomizedDomainObject in AbstractAssembler is
used for the same.

Following image shows call to get Customized domain Object if additional data (Dictionary) is
added to the request DTO.

Writing Custom Domain Object

The custom domain object must extend existing domain object class. Mapping for same should
be done in database as Customized Abstract Domain Object Configuration. This class contains
additional fields added at UI layer and getter, setter for the same.

Below diagram shows the custom domain object and also depicts the role of Dictionary in
mapping additional fields from DTO to this custom domain object.

Chapter 3
Domain Extensions

3-19

For Example:

Configure Customized domain object in database

The domain object created needs to be mapped as a custom domain object for the existing
domain object.

Chapter 3
Domain Extensions

3-20

For example:

insert into digx_fw_config_all_b
(PROP_ID, CATEGORY_ID, PROP_VALUE, FACTORY_SHIPPED_FLAG,
PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE,
OBJECT_STATUS_FLAG, OBJECT_VERSION_NUMBER)
values
('com.ofss.digx.domain.origination.entity.submission.lending.application',
'CustomizedAbstractDomainObjectConfig','com.ofss.digx.domain.origination.entit
y.submission
.lending.application.ext.Application', 'N', 'asdf', 'asdf', 'asdf', '',
'asdf', '', 'Y', 1);

Three main columns that need to be fed with new information are.

• CATEGORY_ID : “CustomizedAbstractDomainObjectConfig”

• PROP_VALUE:” CLASS NAME of the class implementing the custom domain object ”

• PROP_ID:” CLASS NAME of the DomainObject”.

ORM Mapping

If this domain needs to be persisted in local database, then you need to create Eclipse link
ORM mapping to map fields in the domain to database table. Follow these steps:

• Create new ORM file to handle Customized Domain Object.

• This ORM file should contain entries for all custom columns, which are present in the
extension domain.

• The extension domain table will be a secondary table, which will have a primary key join
column with the base domain.

• Add an entry for this ORM XML in the mapping configuration XML

• Create new table corresponds to newly created Domain Object.

Newly created ORM file will look like (CollaborationDemo.orm.xml):

Now add the newly created mapping ORM entry for the extension domain in your custom jar
mapping configuration xml.:

Chapter 3
Domain Extensions

3-21

Create/Update “module-cfg.properties” file in your custom jar and add mapping configuration
xml file name in it.

Here Assembler should fetch customized domain object. Following example shows Assembler
calls getCustomizedDomainObject which returns customized domain object with mapping of
nameValuePairDTOArray to this customized domain Object internally.

For example:

Sequence Diagram

Chapter 3
Domain Extensions

3-22

Configuring this custom domain object at appropriate entity level

insert into digx_me_entity_determinant_b
(DOMAIN_OBJECT_NAME, DETERMINANT_TYPE,REPRESENTED_FIELD, IS_FEATURE_ENABLED)
values ('<Fully qualified domain name>', '<Determinant Type>', '<Represented
Name>', 'Y');

There are four possible determinant types as follows:

• Enterprise (ENT)

• Legal Entity (LGE)

• Market Entity (MKE)

• Business Unit (BNU)

3.5.2 Adding New Domain
This topic provides information on Adding New Domain.

The customization developer can add new domain. Below are the steps to add a new domain.

1. Create new domain class. The new domain class must extend AbstractDomainObject and
implement IPersistenceObject

2. Identify attributes and operations supported by the domain and add them to above domain
class accordingly

Chapter 3
Domain Extensions

3-23

3. The domain object will typically have associated DTO that encapsulates same fields as in
domain. This DTO will be used in request and responses. An assembler will be used to
map fields between domain object and the DTO. Below diagram depicts this relationship.

4. Configure this new domain for appropriate entity level.

 insert into digx_me_entity_determinant_b
 (DOMAIN_OBJECT_NAME, DETERMINANT_TYPE,
REPRESENTED_FIELD,IS_FEATURE_ENABLED)values
 ('<Fully qualified domain name>', '<Determinant Type>',
'<Represented Name>', 'Y');
 For example,insert into digx_me_entity_determinant_b
 (DOMAIN_OBJECT_NAME, DETERMINANT_TYPE,
REPRESENTED_FIELD,IS_FEATURE_ENABLED)values
 (' com.ofss.digx.cz.domain.payment.entity.payee.Payee', 'BNU',
'New Payee','Y');

3.6 Error Messages
This topic provides information on Error Messages.

If an API fails, It returns an error code and an error message which briefly specifies the failure
reason of the API call. Error message is returned from service to convey the cause of
transaction failure.

• Adding Error Message
This topic provides information on Adding Error Message.

• Mapping Host Error Code To OBDX Error Code
This topic provides information on Mapping Host Error Code To OBDX Error Code.

3.6.1 Adding Error Message
This topic provides information on Adding Error Message.

Error codes with their error messages are stored in DIGX_FW_ERROR_MESSAGES table. One can
add a new error message in the table with a unique error code.

ERROR_CODE column should contain unique value.

ERROR_MESSAGE column contains the error message which need to be added.

Chapter 3
Error Messages

3-24

3.6.2 Mapping Host Error Code To OBDX Error Code
This topic provides information on Mapping Host Error Code To OBDX Error Code.

When a transaction fails in host, it provides an error code in response to the failed transaction.
This error code provided by the host could be mapped with OBDX error code to provide a user
friendly error message.

This host error code and OBDX error code mapping is done in DIGX_FW_ERR_COD_MAP table.

THIRD_PARTY_ERR_COD column holds the host error code.

LOCAL_ERR_COD column holds OBDX error code which must be present in
DIGX_FW_ERROR_MESSAGES table from where error message will be picked.

3.7 Adapter Tier
This topic provides information on Adapter Tier.

An adapter, by definition, helps the interfacing or integrating components adapt. In software it
represents a coding discipline that helps two different modules or systems to communicate with
each other and helps the consuming side adapt to any incompatibility of the invoked interface
work together.

Incompatibility could be in the form of input data elements which the consumer does not have
and hence might require defaulting or the invoked interface might be a third party interface with
a different message format requiring message translation. Such functions, which do not form
part of the consumer functionality, can be implemented in the adapter layer.

• Service Provider Interface (SPI) Approach
This topic provides information on Service Provider Interface (SPI) Approach.

• Adding a custom adapter
This topic provides information on Adding a custom adapter.

• Host adapter extension to populate pagination informations
This topic provides information on Host adapter extension to populate pagination
informations.

3.7.1 Service Provider Interface (SPI) Approach
This topic provides information on Service Provider Interface (SPI) Approach.

This section provides information about the SPI approach and how adapters are packaged and
derived at runtime based on current entity and domain under consideration.

Service Provider Interface (SPI) is an API intended to be implemented or extended by a third
party. It can be used to enable framework extension and replaceable components.

•

•

All the external facing adapters will be loaded using SPI.

Benefits of SPI:

• No database entries are required.

Chapter 3
Adapter Tier

3-25

• No need of adapter factories.

• Can add adapters at run-time.

• Provides the list of available implementations from which we can use the best suited one.

In this approach adapter is selected using the following call.

ExtxfaceAdapterFactory.getInstance().getAdapter(Interface.class, "method", DeterminantType);

Here,

• ‘Interface.class’ is object of interface implemented by the host (external system) adapter.

• ‘Method’ is name of method which we are intended to call of that adapter.

• DeterminantType is determinant type of the domain from which this call is made.

Sample code is as follows:

Adapter configuration:

For adapter configurations, the preference ExtxfaceAdapterPreference is used. This
preference contains Entity as key and External System (Host Name + Version) as value. So we
can use select external systems (Hosts) on the basis of entity. E.g. For entity 000 we want to
use UBS 12.4 and for entity 001 use OBP 2502 then the entries will be

We can also give multiple External System separated by comma “,” for an entity, and then
adapter will get selected on the basis sequences of external systems given in value.

E.g. if the value is UBS12.4,BI1.0 then first implementation is searched in UBS 12.4 jar if is not
found then it will look in BI1.0 jar.

Adapter Registration:

After adding adapter java file in project it need to be register as provider. To register your
service provider, create a provider configuration file, which is stored in the META-INF/services
directory of the project. The name of the configuration file is the fully qualified class name of
the service provider(interface implemented by adapter), and file content which is fully qualified
name of the adapter class.

Chapter 3
Adapter Tier

3-26

How will system derive adapter?

In the external system interface implementation project like
(com.ofss.digx.extxface.ubs124.impl), inside src/META-INF folder, we will have a
MANIFEST.MF file inside which we will define the following attributes:-

Implementation-Title: UBS

Implementation-Version: 12.4

It will tell us that the adapters are for external system UBS 12.4. While adding a new interface
implementation project, we need to create MANIFEST.MF file too, defining implementation title
and version.

While calling an adapter, we provide three parameters 1. Interface class name 2.method name
3.determinant type(for particular domain class).

Determinant type for particular domain class (digx_me_entity_determinant_b).

We match determinant type to market entity, then business unit and then legal entity.

On the first match, we derive the external systems using ExtxfaceAdapterPreference
explained above. Then we derive external systems corresponding to others(lower order ones).
Thus we have a list(list 1) of external systems in order.

For example, if 1st match is market entity. Then we will have external systems corresponding
to entries for market entity, then business unit and finally legal entity if entries are found.(in
order).

If 1st match is business unit, then we will have external systems corresponding to entries for
business unit and legal entity if found(in order).

Here in the diagram above, for domain class ConfigVarBDomain, determinant_type is
BNU(business unit). lets suppose corresponding determinant value is 000.

Now, for prop_id=000, it will fetch extsystems as UBS12.3,ipm1.0.

Now for legal entity(LGE), lets suppose corresponding determinant value is 001. so it will fetch
external system as TP1.0.

Chapter 3
Adapter Tier

3-27

So we have external system list (list 1) as {UBS12.3,imp1.0,TP1.0};

Also If none matches, we derive external system corresponding to enterprise. for eg. for
enterprise, lets suppose corresponding determinant value as 01. so external system list(list 1)
will be {UBS12.4,ipm1.0}.

How the adapters are loaded:

Now we will load all those adapter classes, that will implement the interface whcih we get as
first parameter. Now we will maintain another list or map (list 2) of external systems to adapter,
that we will resolve from all those adapter classes. (How will system know that a adapter
belongs to which external system or host?).

We will iterate through list 1(list of external systems that we got from preference entry) in order.
When we find the first matching external system in list 2, we will return the corresponding
adapter.

For example, we iterate through list 1 : {UBS12.3,imp1.0,TP1.0}. it will first find if loaded
adapter class contains adapter that belongs to external system UBS12.3. then it will retun that
adapter. if not found, it will search if any loaded adapter class belongs to imp1.0. if found it will
return that adapter. if not, then it will similarly go for TP1.0.

How to override an adapter?

One can enter (interface class name + ''."+ method name or only interface class name) in
ExtxfaceAdapterPreference against which one can specify the adapter that one want to be
overriden by.

E.g.

Insert into digx_fw_config_all_b
(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,
PROP_COMMENTS,SUMMARY_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,
LAST_UPDATED_DATE,OBJECT_STATUS,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRI
PTION)
values (<Fully qualified adapter interface name>,'extxfaceadapterconfig',
<Fully qualified adapter implementation name>,'N',null,'','ofssuser',
 sysdate,'ofssuser',sysdate,'Y',1,'N',null);

sample:

Insert into digx_fw_config_all_b
(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEX
T,CREATED_BY,
CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS,OBJECT_VERSION_N
UMBER,EDITABLE,
CATEGORY_DESCRIPTION)values ('com.ofss.digx.app.loan.adapter.
ILoanAccountAdapter','extxfaceadapterconfig',
'com.ofss.digx.extxface.loan.impl.LoanAccountMockAdapter','N',null,'','ofssuse
r',
sysdate,'ofssuser', sysdate,'Y',1,'N',null);

Chapter 3
Adapter Tier

3-28

3.7.2 Adding a custom adapter
This topic provides information on Adding a custom adapter.

Please follow below steps for adding a new custom adapter:

• Create a new project for customized adapter interfaces. Typically, there will be only one
customized adapter interfaces project. The name of the project should have the phrase ‘cz’
indicating that it is customized version. For example, com.ofss.digx.cz.extxface.

• Please refer to the Workspace Setup section and its Adapter Interfaces subsection for
details.

• Add required adapter interfaces in this project

• Create another new project for customized adapter implementation classes. Typically, one
project will need to be created per entity, however if the core banking host is same for
different entities, then one project can be used for multiple entities. This decision should be
taken based on implementation scenario. If you are interfacing with any other external
system apart from core banking system (e.g. content management system), then separate
project should be created for adapters interfacing with such systems.

• Please refer to the Workspace Setup section and its Adapter Implementation
subsection for details.

• Name of the project should be having the phrase ‘cz’ indicating that it is part of the
customization. The name should also include external system name and version. This will
bring clarity about contents of the project by looking at the name. The same name will be
used for the JAR packaged out of this project. For example, name of the project for
customized adapters for UBS 12.4 will be com.ofss.digx.cz.extxface.ubs124.impl.

• The MANIFEST.MF file within this project should have implementation title and
implementation version. The implementation title should also capture the phrase ‘CZ’ to
indicate that it is a customized adapter package.

Implementation-Title: CZUBS

Implementation-Version: 12.4

• Write required adapter implementation classes that implement appropriate adapter
interface.

• Create folder META-INF/services under the src folder.

• Create a file under this ‘services’ folder with the name as fully qualified name of the
adapter interface.

• In this file, write the fully qualified name of the adapter implementation class.

• Package the adapter interface in JAR.

• Package the adapter implementation project(s) in JAR(s).

• Configure the adapter implementation package in digx_fw_config_all_b. The prop_value
should have comma separated external system IDs.
For example,

Insert into digx_fw_config_all_b
PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,
SUMMARY_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,
OBJECT_STATUS,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)
values ('01','extxfaceadapterconfig',

Chapter 3
Adapter Tier

3-29

'CZUBS12.4,UBS12.4,ipm1.0','N',null,'',
'ofssuser',sysdate,'ofssuser', sysdate,'Y',1,'N',null);

• Package all customized adapters in obdx.cz.extsystem.domain.ear and deploy it as a
library

Customizing existing adapters (Custom Adapter)

If an added functionality or replacement functionality is required for an existing adapter or
existing method in an adapter, the customization developer has to develop a new adapter and
corresponding adapter factory and override the method in a new custom adapter class. The
custom adapter would have to override and implement the methods which need changes.

Custom Adapter Example

We take the example of LoanApplicationRequirementAdapter. For example the requirement is
to send an email alert when the requirements of a particular loan application are updated. The
OBDX application by default does not provide any integration with an SMTP/Email server. The
additional interfacing with the gateway can be done in the custom adapter. The following steps
would have to be followed for implementation of a custom
LoanApplicationRequirementAdapter.

Develop a CustomLoanApplicationRequirementAdapter and Custom
LoanApplicationRequirementAdapterFactory. As a guideline, the custom adapter should
extend the existing adapter and override the methods which needs to be replaced with new
functionality.

For Example:

Chapter 3
Adapter Tier

3-30

Custom Adapter Configuration

insert into digx_fw_config_all_b
(PROP_ID, CATEGORY_ID, PROP_VALUE, FACTORY_SHIPPED_FLAG, PROP_COMMENTS,
SUMMARY_TEXT,
CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE,
OBJECT_STATUS_FLAG,
OBJECT_VERSION_NUMBER)
values (‘IS_LOAN_APPLICATION_REQUIREMNT_ADAPTER_CUSTOM',
‘customadapterconfig’,
'true', 'N','asdf', 'asdf', 'asdf', '', 'asdf', '', 'Y', 1);

3.7.3 Host adapter extension to populate pagination informations
This topic provides information on Host adapter extension to populate pagination
informations.

This extension feature helps developer to provide information regarding pagination from the
host system. This will be typically used in inquiry transactions where large number of records is
expected in response. To display such large data, pagination approach is used in user
interface to display limited number of records at a time. Based on user action the subsequent
records are fetched. The pagination information provided by this extension can be used in UI
layer to display pagination response as per developer’s requirement.

The supported extension parameters are:

• more : a Boolean field to represent if any more data is available in response

• totalRecords : an Integer containing total number of records for the respective query

Chapter 3
Adapter Tier

3-31

• startSequence : an Integer which can typically contain the sequence number of the first
record in the next pagination records list.

To use the above extension following steps need to be executed.

• The response DTO of service should implement ‘com.ofss.digx.app.dto.Ipaginable’
interface and should override all the methods of this interface.

• Add following snippet in respective extxface adapter after calling
'HostAdapterManager.processRequest(hostRequest)'.

The host specific adapter should return values for ‘hasMore’, ‘totalRecords’, ‘startSequence’ in
order to set the same in the Thread attribute.

• The extension parameters set in the thread attribute will be available in the REST
response as follows:

3.8 Outbound web service extensions
This topic provides information on Outbound web service extensions.

The outbound webservice configurations are set of properties defined to invoke services from
the host. The host is the core bank system where the business logic for core banking facilities
is written and contains the corresponding services to access that data. The existing OBDX
application has an Adapter layer which directly interacts with the host. There are extension
endpoints available for configuring a different host in the adapter layer. Following steps need to
be followed:

Using your own web service constants

The web service constants will change depending on the WSDL specification provided by the
host system. An Example WebServiceConstants file is shown below:

Chapter 3
Outbound web service extensions

3-32

Web service configuration

digx_fw_config_out_ws_cfg_b. Holds the entries for the host service endpoints.

For Example:

insert into digx_fw_config_out_ws_cfg_b (SERVICE_ID, PROCESS, URL,
ENDPOINT_URL,
NAMESPACE,TIME_OUT, SERVICE, STUB_CLASS, SECURITY_POLICY, ENDPOINT_NAME,
STUB_SERVICE,
HTTP_BASIC_AUTH_CONNECTOR, HTTP_BASIC_AUTH_REALM, PROXY_CLASS_NAME, IP, PORT,
USERNAME,
PASSWORD, CREATED_BY, LAST_UPDATED_BY, CREATION_DATE, LAST_UPDATED_DATE,
OBJECT_STATUS,
OBJECT_VERSION_NUMBER, ANONYMOUS_SECURITY_POLICY,ANONYMOUS_SECURITY_KEY_NAME)
values ('inquireApplication','BaseApplicationServiceSpi',

'

'

'','http://application.core.service.origination.appx.fc.ofss.com/
BaseApplicationServiceSpi',
1200000, 'BaseApplicationServiceSpi', '', '', 'BaseApplicationServiceSpiPort',
'com.ofss.fc.appx.origination.service.core.application.baseapplicationservice

Class Diagram

Chapter 3
Outbound web service extensions

3-33

Client Jar

Generate the corresponding service stubs from the WSDL specifications using The JAX-WS RI
tool. Package the generated code as a jar and include it in the Adapter implementation.

Custom Adapter

Lastly create a custom adapter to handle the changes made in the host configurations. The
custom adapter will be using the JAXWSFacotry to create instances of the desired service
stubs. The rest of the custom adapter implementation is the same as mentioned in the section.

For example:

Chapter 3
Outbound web service extensions

3-34

3.9 Security Customizations
This topic provides information on Security Customizations.

OBDX comprising of several modules has to interface with various systems in an enterprise to
transfer/share data which is generated during business activity that takes place during teller
operations or processing. While managing the transactions that are within OBDX, it is needed
to consider security & identity management and the uniform way in which these services need
to be consumed by all applications in the enterprise.

OBDX provides a mechanism for creating permissions and role based authorization model that
controls access of the user to OBDX services.

• Out of box seeding of policies
This topic provides information on Out of box seeding of policies.

3.9.1 Out of box seeding of policies
This topic provides information on Out of box seeding of policies.

When the application is installed, access policies are seeded for Day 0 configuration and
access point definition by default.

The application is shipped with a CSV file – Day0Policy.csv, the policy data to be seeded by
default.

Chapter 3
Security Customizations

3-35

3.10 Taxonomy Validations
This topic provides information on Taxonomy Validations. For extensions in taxonomy
validations, please refer to Oracle Banking Digital Experience Taxonomy Configuration
Guide

3.11 Authentication Extensibility
This topic provides information on Authentication Extensibility.

OBDX now supports authentication extensibility for users based on enterprise roles. This can
be done by following the below steps -

1. Need to write own Java class to implement authentication. Different classes can be used
for different enterprise roles.

2. The custom classes must implement
com.ofss.digx.app.sms.handlers.credentials.ICredentialsManager. Below methods
need to be implemented -
create - This method is to be used to create a user on the external system

public void create(AbstractUser user) throws Exception;

update - This method is to be used to update the user on the external system

public boolean update(User user, boolean isPasswordSystemGenerated) throws
Exception;

verify - This method is to be used to authenticate the user on the external system

public boolean verify(String name, String newPassword, String currentPassword) throws
Exception;

3. The classes' fully qualified names have to be updated in DIGX_FW_CONFIG_ALL_B
against prop_ids - credentials_manager_administrator,
credentials_manager_corporateuser, credentials_manager_retailuser. By default all
three currently have
com.ofss.digx.app.sms.handlers.credentials.LocalCredentialsManager as
prop_value.

3.12 Miscellaneous
This topic provides information on Miscellaneous.

This section lists some other features in OBDX platform that can be extended.

• Task Configurations
This topic provides information on Task Configurations.

3.12.1 Task Configurations
This topic provides information on Task Configurations.

Task Registration:

Every new service to be integrated as a part of OBDX needs to provide a task code. This task
code is required while integrating the

Chapter 3
Taxonomy Validations

3-36

service with various infrastructural aspects applicable to the service. Few examples of
infrastructural aspects or cross cutting

concerns provided out of the box with OBDX are:

• Limits

• Approvals

• Two Factor Authentication

• Transaction Blackout

• Working Window

• Account Relationship

Guidelines for formulating a task code are as follows:

A task code should ideally comprise of three parts:

1. Module Name : The first 2 alphabets representing the module to which the service in
question belongs. e.g TD represents Term Deposits module.

2. Task Type(type of service) : OBDX supports the following 6 types of services.

a. FINANCIAL_TRANSACTION(F) : Any transaction as a result of which there is a
change in the status of the finances of accounts of the participating parties. In general
any transaction that involves monetary transfer between parties via their accounts.
Few examples include Self transfer, New deposit(Open term deposit), Bill payment etc.

b. NONFINANCIAL_TRANSACTION(N) : Any transaction that pertains to an account but
there is no monetary payment or transfer involved in it. For example Cheque book
request.

c. INQUIRY(I) : Any read only transaction supported in OBDX that does not manipulate
any business domain of the financial institution. For example list debit cards, read loan
repayment details, fetch term deposit penalties etc.

d. ADMINISTRATION(A) : Transactions performed by bank admins and corporate
admins for a party come under this category. Few examples of such transactions
include limit definition, limit package definition, user creation, rule creation and various
others.

e. MAINTENANCE(M) : Maintenances done by a party for itself fall under this category.
Maintenance transactions performed by a non admin user which does not involve any
account or monetary transaction comprise of this transaction type. Example add biller.

f. COMMON(C) : Common transactions include transactions which do not fall under any
of the above mentioned categorization. Example login.
So 1 alphbet F,N,I,A,M or C for each of the above mentioned task types respectively
forms the second part of the task code.

3. Abbreviation for service name : A 3 to 10 lettered abbreviation for the service name.
Example OTD for Open Term Deposit. All the above mentioned three parts are delimited
by an underscore character.
Example : TD_F_OTD where TD represents module name. F represents that its a financial
transaction i.e. task type and OTD is the abbreviated form of the transaction(service)
name.

Task Aspects:

An ‘aspect’ of a task is a behavior or feature supported by the task. OBDX framework defines a
set of aspects that can be supported by a task in the system. These aspects need to be

Chapter 3
Miscellaneous

3-37

configured in table DIGX_CM_TASK_ASPECTS. So if a task supports given aspect, then only its
entry should be made in this table. If for any task, entry does not exist in this table for given
aspect, then system treats it as that aspect is not supported by the task.

Additionally an aspect can be temporarily disabled using the ‘ENABLED’ column of this table. If
the ‘ENABLED’ value is set as ‘N’, then system will treat it as this aspect is not supported by
the task. Note that if a task is never going to support an aspect, then its entry should not be
there in DIGX_CM_TASK_ASPECTS table. The ‘ENABLED’=’N’ option for disabling aspect should
be used only when the task generally supports the aspect but it needs to be disabled for small
duration.

Note that just having an entry in this table does not imply that the feature will be enabled for
the task. The entry in this table only tells that system that the task supports this feature.
Individual feature might need further configurations for them to work properly.

List of aspects supported by OBDX framework is listed below. Please note that aspects are not
extensible – in other words it is not possible to add new aspects as part of customization.

For more information on fields, refer to the field description table.

Table 3-5 List of aspects supported by OBDX framework

Aspect Description

Grace-period Indicates that the task supports grace period. Grace period is an
additional period offered by Approval framework for approving a
transaction

Note:

Grace Period will be applicable for the
transactions with due date only.

Ereceipt Indicates that the task supports generation of e-receipts

Audit Indicates that the task supports audit logging

2fa Indicates that the task supports two factor authentication

Working-window Indicates that the task supports working window

Approval Indicates that the task supports approval

Blackout Indicates that the task supports blackout

Limit Indicates that the task supports limit

Account Relationship Indicates that the task supports account relationship check

Grace-period Indicates that the task supports grace period. Grace period is an
additional period offered by Approval framework for approving a
transaction Note: Grace Period will be applicable for the transactions
with due date only.

Steps to register a task with OBDX:

1. The task code needs to be configured in the database table DIGX_CM_TASK. For example if
we consider Open Term Deposit then the below:
query fulfills the requirement mentioned in this step.

Insert into DIGX_CM_TASK
(ID, NAME, PARENT_ID,EXECUTABLE, TASK_TYPE, MODULE_TYPE, CREATED_BY,

Chapter 3
Miscellaneous

3-38

CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE, OBJECT_STATUS, OBJECT_VERSION_NUMBER) values
('TD_F_OTD', 'New Deposit',
 'TD_F', 'Y', 'FINANCIAL_TRANSACTION', 'TD', 'ofssuser', sysdate,
'ofssuser', sysdate, null,1);

As evident from the above query example Tasks have a hierarchy. Every task might have a
parent task denoted by the task code value held by the PARENT_ID column of
DIGX_CM_TASK. In most of the cases its a 3 level hierarchy.

• Leaf level tasks to which services are mapped at the lowest level

• Task representing the module to which the service belongs at the mid level

• Task representing the task type at the root level

For instance consider the task code AP_N_CUG which represents the Usergroup creation
service under module approvals(AP). So the PARENT_ID column of task AP_N_CUG(leaf level
task) has task code as AP(mid level task). If we look at the entry for task code AP(mid level
task) then the value in the PARENT_ID column of DIGX_CM_TASK has MT(root level task)
which is the task code representing task type ADMINISTRATION. The leaf level task has 'Y'
as the value in its EXECUTABLE column. The mid level and root level tasks have 'N' as the
value in its EXECUTABLE column.

2. Configure aspects supported by the task. For example, if above task supports blackout,
approval and working window, then following entries should be made.

Insert into DIGX_CM_TASK_ASPECTS (TASK_ID,ASPECT,ENABLED)
values ('TD_F_OTD','approval','Y');

Insert into DIGX_CM_TASK_ASPECTS (TASK_ID,ASPECT,ENABLED)
values ('TD_F_OTD','working-window','Y');

Insert into DIGX_CM_TASK_ASPECTS (TASK_ID,ASPECT,ENABLED)
values ('TD_F_OTD','blackout','Y');

3. Register the newly created service against this task.
For this step firstly, you need to get the service id for your service(transaction). Service id
is the fully qualified name of the class appended by the dot character (.) and the method
name. For example taking open term deposit into consideration, the business logic for the
service is encapsulated in the method named create of the service class
com.ofss.digx.app.td .service.account.core.TermDeposit.

Hence the service id is derived as :
com.ofss.digx.app.td.service.account.core.TermDeposit.create

Secondly the below query fulfills the requirement mentioned in this step.

insert into DIGX_CM_RESOURCE_TASK_REL
(ID, RESOURCE_NAME, TASK_ID, CREATED_BY,CREATION_DATE, LAST_UPDATED_BY,
LAST_UPDATED_DATE, OBJECT_STATUS, OBJECT_VERSION_NUMBER)
values ('1',
'com.ofss.digx.app.td.service.account.core.TermDeposit.create',
'TD_F_OTD','ofssuser', sysdate, 'ofssuser', sysdate, null,1);

The aforesaid procedure enrolls your newly created service as a task in OBDX.

Managing Task Aspects for Custom Requirements

Chapter 3
Miscellaneous

3-39

http://com.ofss.digx.app.td/
http://com.ofss.digx.app.td/

Out of the Box behaviour:

Every DML service in OBDX application is associated with a Task. A Task in obdx can be
associated to one or more Task Aspects like Approval, Limits, Two Factor Authentication etc.

Probable Requirement: In a special scenario while invoking a service a financial institution
might want to toggle a task aspect for a task.

For such requirements we provide a configuration called taskEvaluatorFactories. This config
can be checked in the application using below query.

For such requirements we provide a TaskEvaluatorFactory which is mapped to Tasks based on
the “@TargetTask” in“@TargetTasks” annotationAnnotations needed to create a
TaskEvaluatorFactory

For more information on fields, refer to the field description table.

Table 3-6 Annotation

Annotation Description

@Custom The @Custom Annotation signifies that the business policy is
customization from the vendor, this is mandatory for every new business
policy created by the vendor.

@TargetTasks The @TargetTasks annotation must include all the @TargetTask that the
business policy needs to target.

@TargetTask Each TargetTask must include a TaskCode(String) specifying the task
intended for the current Business Policy.

1. Every custom TaskEvaluatorFactory must have @Custom annotation signifying it as a
customization from vendor.

2. Every TaskEvaluatorFactory must have a no-args default constructor.

3. Every TaskEvaluatorFactory is configured against a TASK_ID’s using @TargetTasks
annotation which hold the @TargetTask. If the @Base TaskEvaluatorFactory and
@Custom TaskEvaluatorFactor target the same task then for that task the base
TaskEvaluatorFactory will be overridden and suppressed by the Custom
TaskEvaluatorFactory.

4. The fully qualified name of every new TaskEvaluatorFactory must be added in new line of .
META-INF/services/com.ofss.digx.framework

Every TaskEvaluatorfactory class configured here implements the below interface:

com.ofss.digx.framework.task.evaluator.ITaskEvaluatorFactory
which has the below method declaration

public ITaskEvaluator getEvaluator(TaskAspect taskAspect);
Inputs: TaskAspect for which the default behaviour is needed to be changed. For example if
TaskAspect approvals need to be toggled then only that evaluator can be implemented and its
instance can be returned. Rest all TaskAspects can continue using their default evaluators.

Output: Implementation of class ITaskEvaluator explained below.

that means TaskEvaluatorFactory takes a Task Aspect as an input and returns a
TaskEvaluator.Every TaskEvaluator is a class that implements the ITaskEvaluator

Chapter 3
Miscellaneous

3-40

which has the below method declaration

public String evaluateTaskCode(String taskCode,
List<Object> serviceInputs) throws Exception;

Inputs: taskCode - the current task code configured in the system as per the service invoked.

serviceInputs - the arguments passed to the first service called from rest. These arguments
help in deducing the logic whether the special condition is met or not in which we wish to
toggle the TaskAspect.

Output: String that is a new TaskCode(not the one passed as an input) for which we have
configured the TaskAspect in a way different than the default taskcode(the one passed as an
input to evaluateTaskCode).

Let us consider an example of. A
TaskEvaluatorFactory:PeerToPeerPaymentTaskEvaluatorFactory is an implementation of Task
Evaluator Factory which will be used for Task PC_F_CPTP, PC_F_PTP, this is avalaible in the
base product.

Overriding existing Task evaluator factory for a particular task

This can be done by just creating a custom class and adding @TargetTask with taskId of the
taskfor which the Task Evaluator Factory needs to be overridden , this will suppress the
@Base Task evaluator factory implementation The use case for this could be to change the
existing functionality of the TaskEvaluator Factory .

Let us create custom Task Evauluator Factory

CustomPeerToPeerPaymentTaskEvaluatorFactory which will override existing
PeerToPeerPaymentTaskEvaluatorFactory for taskId PC_F_CPTP.

So when TaskEvaluatorFactory is required for taskId “PC_F_CPTP” the
CustomPeerToPeerPaymentTaskEvaluatorFactory will be loaded.

Hypothetical Sample Requirement:

OBDX application should not ask for the configured 2nd Factor Authentication in case of
payments made for less than a pre-configured amount.

Process:

1. insert a new TaskCode in the application by making an entry in the table digx_cm_task.

Chapter 3
Miscellaneous

3-41

2. configure the TaskAspects for this new task such that 2fa is disabled by making
appropriate entries in the table digx_cm_task_aspects.

3. Write a TaskEvaluator as mentioned above such that with the help of serviceInputs it
figures out that the amount getting transfered in this payment is less than pre-configured
amount and hence returns the Task Code created in Step 1. If the amount is greater than
the pre-configured amount, then it returns the task code passed as an input.

4. Write a TaskEvaluatorFactory as explained above. This new TaskEvaluatorFactory can
extend the preconfigured(default) TaskEvalutorFactory such that for TaskAspects other
than TWO_FACTOR_AUTHENTICATION it can return same TaskEvaluator as the
preconfigured TaskEvalutorFactory. For TaskAspect TWO_FACTOR_AUTHENTICATION it
returns the newly created TaskEvaluator written in Step 3.

5. Register fully qualified name of this TaskEvalutorFactory.in META-INF/services/
com.ofss.digx.framework.task.evaluator.ITaskEvaluatorFactory file.

Limit Configuration

The below procedure describes the steps required to enable Limits for a newly developed
service.

A prerequisite to this configuration is that this newly developed service should be registered as
a task in OBDX. Refer “Task Registration” section for further details.

The types of Limits supported by the system are:

• Periodic Limit(Cumulative) : Limits that get reset after the expiration of a period. Example
Daily-limits.

• Duration Limit(Cooling Period) : Limits that get applicable after the occurrence of an event,
for instance payee creation, and then are applicable for the specified duration after
commencement of the event.

• Transaction Limit : Limits applicable to each invocation of a transaction. Holds minimum
and maximum amount that can be transacted in a single transaction invocation.

Limits are applicable to targets. The types of targets supported by OBDX are Task and
Payee.

• Task : Any service developed as a part of OBDX and registered as a task as mentioned in
earlier sections

• Payee : A payee resource created via Payee creation transaction in OBDX.

To enable limits for a service, rather for a task mapped to the service to be precise, we
need to follow the below mentioned steps:

1. Ensure that the ‘limit’ aspect is configured in DIGX_CM_TASK_ASPECTS table and ENABLED
column is updated as 'Y' for your task id.

2. Register taskEvaluatorFactory for your task code. Please refer the above steps for
registering a taskEvalautorFactory.
Code a LimitDataEvaluator for the task. LimitDataEvaluator is a class that extends
AbstractLimitDataEvaluator class present in com.ofss.digx.finlimit.core.jar. This class is an
abstract class which has only 1 abstract method having signature as shown below:

/** * provide {@link AbstractAspectData} of
 currently executing task. * * @param serviceInputs *
the service inputs * @return {@link AbstractAspectData} required
 for limit utilization and validation * @throws Exception
*/public T evaluate(List<Object> serviceParameters) throws Exception

Chapter 3
Miscellaneous

3-42

This method receives a List<Object> as an input. This list has all the arguments that were
passed to the newly coded service for which limits needs to be enabled. For instance,
consider the service to open a termed deposit. Signature of the service is as shown below.

public TermDepositAccountResponseDTO create(SessionContext sessionContext,
 TermDepositAccountDTO termDepositAccountDTO) throws Exception

In this case when the LimitDataEvaluator coded for open term deposit task i.e. TD_F_OTD
is invoked by the OBDX framework, the serviceInputs argument of evaluate method will
contain 2 objects in the list namely SessionContext and TermDepositAccountDTO. The
return type of evaluate method is LimitData. The state of a LimitData object comprises of
three variables:

• CurrencyAmount : an Object of type CurrencyAmount which represents the monetary
amount involved in the ongoing transaction along with the currency in the transfer or
payment is made.

• payee : An object of type PayeeDTO. Needs to be populated in case a payee is involved
in the transaction.

• limitTypesToBeValidated : A list of LimitTypes. For all unexceptional practical
purposes this needs to be populated as shown below:

limitTypesToBeValidated = new ArrayList<LimitType>(Arrays.asList
(LimitType.PERIODIC,LimitType.DURATION,LimitType.TRANSACTION));

These 3 fields in case applicable needs to be derived from the argument serviceInputs
and populated in the returned LimitData object.

• Register the LimitDataEvaluator coded in Step 3.

• Every LimitDataEvaluator(AspectDataEvaluator) must have @Custom annotation
signifying it as a customization from vendor.

• Every LimitDataEvaluator(AspectDataEvaluator) must have a no-args default constructor

• Every LimitDataEvaluator is configured against TASK_ID’s using @TargetTasks annotation
which hold the @TargetTask. If the @Base LimitDataEvaluator and @Custom
LimitDataEvaluator target the same task and the supportedAspects are the same
then for that task the @Base LimitDataEvaluator will be overridden and suppressed
by the @Custom LimitDataEvaluator.

• The fully qualified name of every new TaskEvaluatorFactory must be added in new line of
META-INF\services\com.ofss.digx.framework.evaluator.data.IAspectDataEvaluator file.

1. Code a TargetEvaluator for your task.

Note:

This step is needed only if your task requires limits involving Payees. Example
Duration Limits and payee limits.

Payee limits are Periodic and Transactional limits applied on a Payee. TargetEvaluator is a
class that implements ITargetEvaluator interface.

Chapter 3
Miscellaneous

3-43

TargetEvaluator is a functional interface that has only 1 method as shown below :

/** * Evaluates the Target details for the given evaluated task code and
service
inputs in the form of * {@link TargetDTO}. *
* @param evaluatedTaskCode * the given evaluated task code * @param
serviceInputs *
inputs of the service using this evaluator * @return target details of the
target for
this task code and service inputs in the form of {@link TargetDTO}.
* @throws Exception * exception while evaluating {@link TargetDTO} */
 public TargetDTO evaluate(String evaluatedTaskCode, List<Object>
serviceInputs) throws
Exception;

This method accepts the task code and serviceInputs in case something needs to be
derived from the arguments passed to the service.

It returns a TargetDTO. TargetDTO has an id, name, value and TargetTypeDTO. TargetType
tells whether the target is of type task or payee.

If the TargetType is TASK then the variable value of TargetDTO holds the task code for the
service.If the TargetType is PAYEE then the variable value of TargetDTO holds the payeeId
of the payee involved in the service.

As this step is required only for limits pertaining to payees so TargetType will be PAYEE and
targetDTO's value will be payeeId.

2. Register the TargetEvaluator coded in Step 4.

Note:

This step is needed only if your task requires limits involving Payees. Example
Duration Limits and payee limts.

Payee limits are Periodic and Transactional limits applied on a Payee.

This needs an insert in DIGX_FL_TARGET_EVALUATOR table as shown below:

Insert into DIGX_FL_TARGET_EVALUATOR
(TASK_CODE, TARGET_TYPE, EVALUATOR, PROP_COMMENTS, SUMMARY_TEXT,
CREATED_BY,
 CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,
OBJECT_VERSION_NUMBER) values (<<task code>>, 'PAYEE', <<TargetEvaluator>>,
null, 'target evaluator for <<service name>> service', 'ofssuser', sysdate,
'ofssuser', sysdate, 'Y', 1);

In the above query <<task code>> is the task code for the service, <<TargetEvaluator>>
is the fully qualified name of the

class coded in Step 4. <<service name>> is a descriptive name for the service.

The aforesaid procedure enables limits for a task in OBDX.

Approval Configuration

Chapter 3
Miscellaneous

3-44

The below procedure describes the steps required to enable Approvals for a newly developed
service.

A prequisite to this configuration is that this newly developed service should be registered as a
task in OBDX. Refer “Task Registration” section for further details.

To enable approvals for a service, rather for a task mapped to the service to be precise, we
need to follow the below mentioned steps:

• Ensure that the ‘approval’ aspect is configured in DIGX_CM_TASK_ASPECTS table and
ENABLED column is set to ‘Y’ for your task id.

Note:

If the newly created task is of type ADMINISTRATION and the maintenance is not
specific to a party then this step is not required. Examples of such transaction are
2 Factor Authentication maintenance, limit maintenance and limit package
maintenance. Tasks of type ADMINISTRATION which are specific to a party like
Rule management tasks, workflow management tasks etc require this step.
Tasks of type
FINANCIAL_TRANSACTION,NONFINANCIAL_TRANSACTION,MAINTENANCE,INQUIRY
and COMMON require this step.

Code an approval assembler for the new task. An approval assembler is a class
that extends AbstractApprovalAssembler.

Steps to Code an approval assembler for the new task. Annotations that are used are as
follows:

For more information on fields, refer to the field description table.

Table 3-7 Annotation

Annotation Description

@Custom The @Custom Annotation signifies that the business policy is
customization from the vendor, this is mandatory for every new business
policy created by the vendor.

@TargetServices The @TargetServices annotation must include all the @TargetService
that the business policy needs to target.

@TargetService Each TargetService must include a serviceID (String) specifying the
service intended for the current Business Policy. It can optionally include
@Priority annotation.

1. An approval assembler is a class that extends AbstractApprovalAssembler.

2. The new Approval Assembler class should contain @Custom annotation. The @Custom
annotation is used to denote that the Approval assembler is customization from vendor.

3. It must also contain @TargetServices which contains @TargetService, mapping the
approval assembler to different services The @TargetServices annotation holds different
@TargetService that hold serviceID of a service.If a @Custom Assembler targets a service
similar to the @Base Assembler then the @Custom assembler will override the @Base
assembler for that service.

4. The new Approval Assembler must have a no-args default constructor.

Chapter 3
Miscellaneous

3-45

5. For every new Approval assembler anEntry in META-
INF\services\com.ofss.digx.framework.domain.transaction.assembler.AbstractApprovalAss
embler is mandatory.

There are 4 methods in abstract approval assembler out of which the one with the below
signature:

public abstract T toDomainObject(D requestDTO) throws Exception;
will encapsulate the logic required to populate Transaction domain which is used by approvals
framework.

Rest of the methods need to be overridden with empty or null implementations.

As evident from the signature quoted above this method accepts a requestDTO(an object that
IS A DataTransferObject) and a transaction(an object that IS A Transaction).

requestDTO is the same DataTransferObject that was passed to your newly created service.
For instance consider the service to open a termed deposit. Signature of the service is as
shown below.

public TermDepositAccountResponseDTO
create(SessionContext sessionContext,
TermDepositAccountDTO termDepositAccountDTO) throws Exception

In this case when the ApprovalAssembler coded for open term deposit task i.e. TD_F_OTD is
invoked by the OBDX framework, the requestDTO argument of toDomainObject method will be
the same as termDepositAccountDTO.

This method populates the transaction object on the basis of the requestDTO and returns the
transaction domain. The guidelinesto override this method are as follows:

• Instantiation:
The transaction object passed will be null and needs to be instantiated. If the task type of
the newly created service is FINANCIAL_TRANSACTION then the transaction needs to be
instantiated as an object of AmountAccountTransaction.

transaction = new AmountAccountTransaction();
If the task type of the newly created service is NONFINANCIAL_TRANSACTION then the
transaction needs to be instantiated as an object of AccountTransaction.

transaction = new AccountTransaction();
If the task type of the newly created service is MAINTENANCE then the transaction needs to
be instantiated as an object of PartyTransaction.

transaction = new PartyTransaction();
If the task is of type ADMINISTRATION and the maintenance is not specific to a party then
the transaction needs to be instantiated as an object of Transaction.

transaction = new Transaction();
• Callto AbstractApprovalAssembler :

Call transaction = super.toDomainObject(requestDTO, transaction);

This populates the generic state of transaction domain which does not change with the
task for which approvals is being configured. c. Populate the state of the transaction
domain which is specific to the task for which approvals is being configured. Cast the
requestDTO to the type being accepted by the service. For example cast it to

Chapter 3
Miscellaneous

3-46

TermDepositAccountDTO as per the aforesaid example. Use this DTO to populate the
service specific state of the transaction domain like amount, account etc.

• If the newly created task is of type ADMINISTRATION and the maintenance is not specific to
a party then the approval assembler to be registered against your service is
om.ofss.digx.framework.domain.transaction.assembler.GenericDTOTransactionAssembler
2 Factor Authentication Maintenance is a fine example of such transactions. The service id
for this transaction is com.ofss.digx.app.security.service.authentication.maintenance.
AuthenticationMaintenance.
Create a new approval assembler and extend the existing
com.ofss.digx.framework.domain.transaction.assembler.GenericDTOTransactionAssemble
r and map this approval assembler to your required service. This will cause the new
assembler to inherit all the methods of the GenericDTOTransactionAssembler.

It must have no-args default constructor and and entry must be made in META-
INF\services\com.ofss.digx.framework.domain.transaction.assembler.AbstractApprovalAss
embler

Lets us understand how to override the approval assemblers

Suppose we want to customize the assembler for
"com.ofss.digx.app.approval.service.usergroup.UserGroup.create" service which uses
UserGroupTransactionAssembler as seen below.

UserGroupTransactionAssembler

Create a new assembler “UserGroupCustomTransactionAssembler” that extends the
AbstractApprovalAssembler and give it the @Custom Annotation to indicate it as a
customization , also if @Custom Assembler targets a service which is also a Target of
@Base Assembler then for that particular service the @Custom assembler will
override the @Base Assembler

Also respective entries for the new UserGroupCustomTransactionAssembler needs to be
made in META-INF/services/
com.ofss.digx.framework.domain.transaction.assembler.AbstractApprovalAssemble
r

The aforesaid procedure enables approvals for a task in OBDX.

Account Relationship

Using this aspect, one can control accounts for a transaction.

Chapter 3
Miscellaneous

3-47

1. Account Number List Filtration
To filter the account list based on Account Relationship configuration, task code should be
provided in REST call in following manner

../digx/v1/accounts/demandDeposit?taskCode=TD_F_OTD

Above REST will return only allowed accounts for ‘New Deposit’ transaction.

2. Account Number Validation
Here we validate account number(s) using Account Relationship Configuration.

Following changes need to be done to achieve this

Evaluator class – If ‘Account Relationship Check’ is enabled for a transaction, then
application looks for registered evaluator class. This class is used to identify account
number(s) from incoming request object and converts it into input which is required for
account relationship checking.

Evaluator class should implement interface

‘com.ofss.digx.app.accountrelationship.evaluator.mapping.IAccountRelationshipD
ataEvaluator’
Annotations needed to create a AccountRelationshipEvaluator

For more information on fields, refer to the field description table.

Table 3-8 Annotation

Annotations Description

@Custom The @Custom Annotation signifies that the business policy is
customization from the vendor, this is mandatory for every new
business policy created by the vendor.

@TargetTasks The @TargetTasks annotation must include all the @TargetTask that
the business policy needs to target.

@TargetTask Each TargetTask must include a TaskCode(String) specifying the task
intended for the current Business Policy.

1. Every custom AccountRelationshipEvaluator must have @Custom annotation signifying it
as a customization from vendor.

2. Every AccountRelationshipEvaluator must have a no-args default constructor.

3. Every TaskEvaluatorFactory is configured against TASK_ID’s using @TargetTasks
annotation which hold the @TargetTask. If the @Base AccountRelationshipEvaluator and
@Custom AccountRelationshipEvaluator target the same task then for that task the base
AccountRelationshipEvaluator will be overridden and suppressed by the Custom
AccountRelationshipEvaluator.

4. The fully qualified name of every new AccountRelationshipEvaluator must be added in
new line of META-INF/services/
com.ofss.digx.app.accountrelationship.evaluator.mapping.IAccountRelationshipDataEvalua
tor file.

Example -
‘com.ofss.digx.app.td.evaluator.accountrelationship.TDAccountRelationshipEvaluator’ is an
evaluator class which is used for ‘New Deposit’ transaction.

Inside ‘evaluate’ method of this class, account number from request object
‘com.ofss.digx.app.td.dto.account.TermDepositAccountDTO’ is being get converted into list of
‘com.ofss.digx.app.party.dto.relation.account.PartyToAccountRelationshipDTO’.

Chapter 3
Miscellaneous

3-48

Also respective entries of name of the evaluator needs to be made in META-INF/services/
com.ofss.digx.app.accountrelationship.evaluator.mapping.IAccountRelationshipDataEvaluator
file.

This will register TDAccountRelationshipEvaluator for the task “TD_F_OTD”

Note that if there is a @Base(comes with base product) evaluator that targets the same task
“TD_F_OTD” the above @Custom evaluator will override it.

Date Evaluators

They are used to get the date depending on the TaskCode. This could be used in scenarios
where a different date evaluator implementation is required for different TaskCode as current
date is specific to the transaction being performed.

eg: For transactions(such as international transfer) where third party hosts are used , different
date evaluators can be used to get the current date from respective host.

Annotations needed to create a DateEvaluator

For more information on fields, refer to the field description table.

Table 3-9 Annotations

Annotation Description

@Custom The @Custom Annotation signifies that the business policy is
customization from the vendor, this is mandatory for every new business
policy created by the vendor.

@TargetTasks The @TargetTasks annotation must include all the @TargetTask that the
business policy needs to target.

@TargetTask Each TargetTask must include a TaskCode(String) specifying the task
intended for the current Business Policy.

1. Every custom DateEvaluator must have @Custom annotation signifying it as a
customization from vendor.

2. Every DateEvaluator must have a no-args default constructor.

3. Every DateEvaluator is configured against TASK_ID’s using @TargetTasks annotation
which hold the @TargetTask. If the @Base DateEvaluator and @Custom DateEvaluator
target the same task then for that task the base DateEvaluator will be overridden and
suppressed by the Custom DateEvaluator.

4. The fully qualified name of every new DateEvaluator must be added in new line of META-
INF/services/com.ofss.digx.app.date.evaluator.AbstractDateEvaluator file

5. Every DateEvaluator must extend
com.ofss.digx.app.date.evaluator.AbstractDateEvaluator;

Chapter 3
Miscellaneous

3-49

4
Extensible Points in Approval

This topic provides information on Extensible Points in Approval. This article explains
extensible points in Approval framework.

• Adding New Rule Criteria
This topic provides information on Adding New Rule Criteria.

4.1 Adding New Rule Criteria
This topic provides information on Adding New Rule Criteria.

Every rule in the system is created against a TaskType. TaskType decides which Rule Criteria
are to be associated with a Rule being created. Examples of existing Rule Criteria are
Transaction, Account, Amount and Currency.

If the existing Rule Criteria does not meet your requirement, then a new Rule Criteria can be
extended in the system by following the steps given below:

• Adding New Rule Criteria
This topic provides information on Adding New Rule Criteria.

• Implementing a Rule Criteria Handler
This topic provides information on Implementing a Rule Criteria Handler.

• Registering a Rule Criteria Handler
This topic provides information on Registering a Rule Criteria Handler.

4.1.1 Adding New Rule Criteria
This topic provides information on Adding New Rule Criteria.

Add a new rule criteria in the Table DIGX_AP_RULE_CRITERIA shown below against the
TASK_TYPE to which the customized Task belongs:

4-1

4.1.2 Implementing a Rule Criteria Handler
This topic provides information on Implementing a Rule Criteria Handler.

For the newly created RuleCriteria mentioned in step above , create a RuleCriteriaHandler
implementation. This class implements the interface named
com.ofss.digx.app.approval.service.rulecriteria.handler.IRuleCriteriaHandler
Override the methods

• addRuleCriteriaRelationships : This method returns the list of
RuleRuleCriteriaRelationshipDTO to be added as a part of the newly created RuleCriteria
to the rule being created for the TaskType to which the customized task belongs.

• getRuleCriteriaMultiplierForRule: returns a multiplier (datatype :double) which gives
precedence to a rule over other rule in case both the rules are applicable for a particular
instance of a transaction.

Note:

While implementing Rule Criteria Handler make sure that it is implemented in a way
that it does not impact existing Tasks in the system belonging to the TaskType
against which it is added.

4.1.3 Registering a Rule Criteria Handler
This topic provides information on Registering a Rule Criteria Handler.

The Rule Criteria Handler implemented in the step above needs to be registered in the system.
To register make an entry in the table DIGX_FW_CONFIG_ALL_B as shown in the example query
below.

insert into DIGX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG,PROP_COMMENTS,
SUMMARY_TEXT, CREATED_BY, CREATION_DATE, LAST_UPDATED_BY,

Chapter 4
Adding New Rule Criteria

4-2

LAST_UPDATED_DATE,OBJECT_STATUS,OBJECT_VERSION_NUMBER)

values ('<<Rule Criteria Name>>', 'RuleCriteriaHandlerConfig','<<Fully
qualified name of the Handler implementation class
created in the step above>>', 'N', 'Specifies the class name of the Handler
for rule criteria type <<Rule Criteria Name>>.',
'Specifies the class name of the Handler for rule criteria type <<Rule
Criteria Name>>.',
'ofssuser', sysdate, 'ofssuser', sysdate, 'A', 1);

Chapter 4
Adding New Rule Criteria

4-3

5
Architecture of Service Tier

This topic provides information on Architecture of Service Tier.

Let’s go through the building blocks of OBDX framework (also known as DIGX framework). To
build a REST API, each of these framework components (as mentioned below) needs to be
addressed and that’s why it becomes important to have a holistic idea about each of them.

The arrangement of all of these framework components can be clearly understood in the
following diagram:

DIGX Service Layer

1. REST: The endpoint layer which gets invoked whenever a request URI is called. Also
known as the layer which contains REST annotations and path to resources or sub-
resources of an application

2. Service: Also called as module layer of the framework. Generally, the core modules of
DIGX application will have their own service implementation classes responsible for
implementing core business logic, validation and security checks

3. Assemblers: These are the mapping classes which convert data object containing request
or response parameters into domain or database compatible form. These classes help us
to get the required domain objects which can be further used in object-relational mapping

4. Business Policy/ System Constraints: Before letting the query data read or persisted in
the core application, certain business policies need to be validated. This separate layer of
constraints check let the application behave as per the policies configured

5. Domain/Entity: Represents the Java Object form of Database. This domain layer also
contains data to be persisted or query response fetched through Object relational mapping

6. Domain Repository: The term ‘repository’ denotes any data storage component. Each
module of the application will have its own repository to manage its CRUD operations and
that can be easily done using this component of the DIGX framework

5-1

7. Domain Repository Adapter: Adapters are the connecting points to some external
system and as the name suggests, this part of the framework contacts two kinds of
repositories of DIGX application – Local Repository and Remote Repository. Eventually,
the configured one out of these two will be invoked

8. Adapters: Finally these are the adapter classes that can call either Local Database (DIGX
specific tables) or Remote Repository (external system).

9. External System/ Host: The core banking application such as UBS/FCORE or OBP or
any third-party application which operates final banking transactions.

Chapter 5

5-2

6
Extensible Points in GUI Tier

This topic provides information on Extensible Points in GUI Tier. This article provide the
guidelines for UI Extensibility.

• Theme and Brand
This topic provides information on Theme and Brand.

• Component Extensibility
This topic provides information on Component Extensibility.

• Calling custom REST service
This topic provides information on Calling custom REST service.

6.1 Theme and Brand
This topic provides information on Theme and Brand.

• CSS Custom Properties are available for modifications. You can change the variables by
creating a new CSS file which has updated value of CSS custom properties. Make sure
that file is imported after the main.css file. Same functionality you can achieve by Branding.
It is recommended that implementer should use Branding functionality.

• We are not allowing adding new styles in the core UI.

• For the Images you are free to do modifications.

6.2 Component Extensibility
This topic provides information on Component Extensibility.

• Framework Elements like (header,dashboard, menu etc) are not available for the
modification and customization.

• All components available under component folder are available for the extension.

• Adding New And Overriding Existing Components
This topic provides information on Adding New And Overriding Existing Components.

• Add / Modify Validations
This topic provides information on Add / Modify Validations.

6.2.1 Adding New And Overriding Existing Components
This topic provides information on Adding New And Overriding Existing Components.

If you want to add new component place that component in <CHANNEL_ROOT_PATH>/
extensions/components. It follow the same structure which is present in components folder.
Same thing is applicable for the existing components. If you want to change anything then
copy that component and place it extensions/components folder with the same structure.

If resource bundle needs to change for that component place related resource bundle in
<CHANNEL_ROOT_PATH>/extensions/resources location. Structure remain same for

6-1

<CHANNEL_ROOT_PATH>/resources and <CHANNEL_ROOT_PATH>/extensions/resources folder.
Make sure that you updated the resource bundle path in your component.

If any component is present in <CHANNEL_ROOT_PATH>/extensions/components will take
precedence over the <CHANNEL_ROOT_PATH>/components. For it we maintaining the list of
components available in extensions in <CHANNEL_ROOT_PATH>/extensions/extension.json
which is to be entered manually. For example:

Sample JSON for extension.json

{"components":
[<component1>,<component2>].“partials” :
 [“partial1.html”,”partial2.html”]}

In the same manner you can override the partial templates.

Note:

Out of the box we are providing extension for Internal Account Input Component
(inernal-account-input). This extension need to be implemented in scenario where the
bank account number do not have branch code prefixed in the account.

6.2.2 Add / Modify Validations
This topic provides information on Add / Modify Validations.

All the validation available in the application are maintained in <CHANNEL_ROOT_PATH>/
framework/js/base-models/validations/obdx-locale.js. Implementer can override and
add new validations in the application without changing this file. An extension hook is given at :

For OBDX 18.1 at <CHANNEL_ROOT_PATH>/extensions/validations/obdx-locale.js
From OBDX 18.2 onwards <CHANNEL_ROOT_PATH>extensions\override\obdx-locale.js
In this file Implementer can add or override validations.

For Example: If you need to change the pattern which validate Mobile Number. Add updated
pattern in this file as below.

Chapter 6
Component Extensibility

6-2

6.3 Calling custom REST service
This topic provides information on Calling custom REST service.

In implementation if any new services are written by implementer it has been directed to
change the context root for new REST to digx/cz/v1. For supporting it from the UI, implementer
has to pass cz/v1 in the version field of the AJAX setting from his model.

For example see the snippet below:

Chapter 6
Calling custom REST service

6-3

Chapter 6
Calling custom REST service

6-4

7
Libraries

This topic provides information on Libraries. OBDX has bundled its platform features and
capabilities in various libraries based on logical separation of features. This section provides a
list of such libraries along with their purpose.

• OBDX Libraries
This topic provides information on OBDX Libraries. This section provides information
about various OBDX libraries that are provided out of the box.

7.1 OBDX Libraries
This topic provides information on OBDX Libraries. This section provides information about
various OBDX libraries that are provided out of the box.

• Core/Framework Libraries
This topic provides information on Core/Framework Libraries.

• Common Library
This topic provides information on Common Library.

• Modules
This topic provides information on Modules.

• External System Adapters
This topic provides information on External System Adapters.

7.1.1 Core/Framework Libraries
This topic provides information on Core/Framework Libraries.

Provide infrastructure features of OBDX platform. These libraries are packaged in the digx-
shared-libs.war
For more information on fields, refer to the field description table.

Table 7-1 Libraries

Library Description

com.ofss.digx.infra.audit Provides basic infrastructure classes for audit.

com.ofss.digx.infra.crypto.imp
l.jar

Provides default implementations of cryptography functions such as
hash generation, public private key generation and symmetric
cryptography provider.

com.ofss.digx.infra.crypto Provides cryptography functions such as hash generation, public private
key generation and symmetric cryptography provider.com.ofss.digx.infra.crypto.asy

mmetric.impl.db

com.ofss.digx.infra.crypto.asy
mmetric.impl.keystore

com.ofss.digx.infra.crypto.asy
mmetric.impl.remote

7-1

Table 7-1 (Cont.) Libraries

Library Description

com.ofss.digx.infra.crypto.imp
l.jar

Provides default implementations of cryptography functions such as
hash generation, public private key generation and symmetric
cryptography provider.

com.ofss.digx.framework.dom
ain

Provides base classes for entities, assemblers, repositories etc.

com.ofss.digx.framework.rest Provides classes for calling host REST services.

com.ofss.digx.framework.ada
pter

Provides adapter interfaces for cross-domain invocation required for the
framework.

com.ofss.digx.appx.core.rest Provides infrastructure classes for OBDX REST services

com.ofss.digx.datatype Provides complex data types used in OBDX application

com.ofss.digx.core.enumerati
on

Provides enumerations required for the core framework of the
application.

com.ofss.digx.appcore Provides base classes for application services, Interaction classes etc.

com.ofss.digx.security.core Provides two factor authentication related core classes.

com.ofss.digx.appcore.dto Provides DTOs used in infrastructure services

com.ofss.digx.annotations Provides various annotations used in OBDX application

com.ofss.digx.appx.core.soap Provides infrastructure classes for OBDX REST services

com.ofss.digx.core.enumerati
on.converters

Provides infrastructure classes for defining converter logic for
enumeration

com.ofss.digx.framework.sch
eduler

Provides infrastructure classes for OBDX scheduler

com.ofss.digx.infra.orms Contains ORM mapping files for framework domains

com.ofss.digx.infra.token.sec
urity

Contains infrastructure classes for provide user/subject information
using token.

7.1.2 Common Library
This topic provides information on Common Library.

Provide common libraries used across all modules of the application. These libraries are
packaged in digx-shared-libs.war

Table 7-2 Common Libraries

Library Description

com.ofss.digx.adapter Provides interfaces for cross-domain adapters.

com.ofss.digx.common Provides all constants and utilities to be used across the application.

com.ofss.digx.enumeration Provides all enumerations.

com.ofss.digx.extxface Provides adapters for interaction with external applications.

com.ofss.digx.finlimit.core Provides core classes for financial limits processing

com.ofss.digx.access.core Provides core classes for account access processing

7.1.3 Modules
This topic provides information on Modules.

Provide functional module available in the application.

Chapter 7
OBDX Libraries

7-2

• digx-access.war

• digx-account.war

• digx-accountaggregation.war

• digx-accountrelationship.war

• digx-alerts.war

• digx-analytics.war

• digx-approval.war

• digx-associatedparty.war

• digx-audit.war

• digx-berlinaisp.war

• digx-berlinpiisp.war

• digx-berlinpisp.war

• digx-brand.war

• digx-budget.war

• digx-bulkadmin.war

• digx-bulkcms.war

• digx-bulkinvoice.war

• digx-bulkpayment.war

• digx-bulkscf.war

• digx-bulktradefinance.war

• digx-bulkvam.war

• digx-card.war

• digx-chatbot.war

• digx-cms.war

• digx-collaboration.war

• digx-common.war

• digx-config.war

• digx-content.war

• digx-creditfacility.war

• digx-cutoff.war

• digx-dda.war

• digx-ebpp.war

• digx-feedback.war

• digx-finlimit.war

• digx-forexdeal.war

• digx-goal.war

• digx-insight.war

• digx-invoice.war

Chapter 7
OBDX Libraries

7-3

• digx-liquiditymanagement.war

• digx-loan.war

• digx-loanapplication.war

• digx-location.war

• digx-login.war

• digx-me.war

• digx-mobile.war

• digx-nlp.war

• digx-oauth.war

• digx-obc.war

• digx-origination.war

• digx-party.war

• digx-payment.war

• digx-pm.war

• digx-processmanagement.war

• digx-report.war

• digx-rewards.war

• digx-scf.war

• digx-security.war

• digx-sms.war

• digx-smsbanking.war

• digx-social.war

• digx-spendanalysis.war

• digx-sr.war

• digx-td.war

• digx-tradefinance.war

• digx-ukaisp.war

• digx-ukcbpii.war

• digx-ukpisp.war

• digx-user.war

• digx-vam.war

• digx-wallet.war

• digx-wm.war

7.1.4 External System Adapters
This topic provides information on External System Adapters.

These are packaged into module specific wars.

Chapter 7
OBDX Libraries

7-4

For more information on fields, refer to the field description table.

Table 7-3 External System Adapters

Library Description

com.ofss.digx.<module_name
>.extxface

Provides all external interfaces

com.ofss.digx.extxface.<Host
Name>.impl

Provides adapter implementations of the external interfaces for
particular host

com.ofss.<Host
Name>.soap.client

Provides stubs used for communicating with host

Chapter 7
OBDX Libraries

7-5

8
Digx Scheduler Application

This topic provides information on Digx Scheduler Application. This section describes how to
create custom schedulers in OBDX.

• Create New Scheduler Class
This topic provides information on Create New Scheduler Class.

• Configure Scheduler Class
This topic provides information on Configure Scheduler Class.

8.1 Create New Scheduler Class
This topic provides information on Create New Scheduler Class.

Follow the steps given below while creating new scheduler:

1. Implement the class with org.quartz.Job, java.io.Serializable.
Example

public class ReportSchedulerImpl implements Serializable, Job {}

2. Define the required business logic in the overridden method
execute(JobExecutionContext) required for scheduling.
Example

@Overridepublic void execute
(JobExecutionContext paramJobExecutionContext) throws JobExecutionException
{// business logic required for scheduling}

3. Get the SessionContext and AccessPoint objects from the method parameter before
calling the business logic (if any). Set both the objects in the thread attributes.
Example

SessionContext sessionContext = (SessionContext)
paramJobExecutionContext.getJobDetail().getJobDataMap().get("sessionContext
");
AccessPointDTO accessPoint = (AccessPointDTO)
paramJobExecutionContext.getJobDetail().getJobDataMap().get("accessPoint");
com.ofss.digx.infra.thread.ThreadAttribute.set(com.ofss.digx.infra.thread.T
hreadAttribute.ACCESS_POINT,
accessPoint);ThreadAttribute.set(ThreadAttribute.SESSION_CONTEXT,
sessionContext);

4. Call the respective service class (if any) for business logic.
Example

try {
 ReportRequest service = new
 ReportRequest();service.executeScheduled(sessionContext);
 }

8-1

 catch (Exception e)
 {
 logger.log(Level.SEVERE, "Error occurred while executing
ReportSchedulerImpl
 class at : " + new java.util.Date(), e);
 }
 catch (java.lang.Exception e)
 {
 logger.log(Level.SEVERE, "Error occurred while executing
ReportSchedulerImpl
 class at : " + new java.util.Date(), e);
 }

8.2 Configure Scheduler Class
This topic provides information on Configure Scheduler Class.

Configure the newly created scheduler class in “DIGX_CM_TIMER” table as per the
following script.

Example:

Insert into digx_cm_timer
(TIMER_ID,TIMER_CLASS,SECONDS,MINUTE,HOUR,DAY_OF_WEEK,DAY_OF_MONTH,MONTH,YEAR,
IS_ENABLED,IS_PESISTENT,
JVM_ID,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_VERSI
ON_NUMBER)
values
('ReportSchedulerTimer','com.ofss.digx.scheduler.report.ReportSchedulerImpl','
0',
'*/
15','*',null,null,null,null,'Y','N','1','ofssuser',sysdate,'ofssuser',sysdate,
1);

Chapter 8
Configure Scheduler Class

8-2

9
Consistent UI Download

• Implement IPaginable and add XmlRootElement annotation on Response Object
This topic provides information on Implement IPaginable and add XmlRootElement
annotation on Response Object

• Add configurations in the Metadata Tables
This topic provides information on Add configurations in the Metadata Tables.

• Custom Datatypes for Report Download
This topic provides information on Custom Datatypes for Report Download.

• Adding content before and after table in PDF Reports
This topic provides information on Adding content before and after table in PDF
Reports.

9.1 Implement IPaginable and add XmlRootElement annotation
on Response Object

This topic provides information on Implement IPaginable and add XmlRootElement
annotation on Response Object

To enable UI Download on a service, you should implement the IPaginable Interface and add
the XmlRootElement annotation as shown below. The XmlRootElement’s name property
should be 'root', and you need to implement all the methods in the IPaginable Interface.

9-1

Chapter 9
Implement IPaginable and add XmlRootElement annotation on Response Object

9-2

9.2 Add configurations in the Metadata Tables
This topic provides information on Add configurations in the Metadata Tables.

The report generation system relies on the following metadata tables

1. DIGX_CM_TABLE_METADATA
Stores information about each table.

For more information on fields, refer to the field description table.

Table 9-1 Stores Information - Field Description

Property Description

TABLE_CODE Unique identifier for each table.

SUPPORTED_DOWNLOAD_TYP
ES

Media types supported for download. Supported values are ‘pdf’ and
‘csv’.

PAGINATION_TYPE The type of pagination supported. Supported values are ‘S’ and ‘V’.
Static (‘S’) refers to a one time fetching of all records. Virtual (‘V’)
refers to virtual fetching of records.

ACTION_COMPONENT The path of the UI component present in channel folder for which
gets loaded on click of a row.

TABLE_HEADER Comma Separated Values for Report and UI Screen Headers.
Please note headings are NLS supported. The file name should be
<TABLE_CODE>.properties and maintain at location “config/
resources/nls/tablemetadata” with the keys and values.
Example: BrandManagement, ManageBrand

Here the BrandMangement header key will be used for reports and
ManageBrand will be used for UI screen.

Incase the second value is missing. The UI screen won’t show the
header.

Example: BrandManagement

TABLE_HEADER The heading to show on the table. Please note headings are NLS
supported. The file name should be <TABLE_CODE>.properties and
maintain at location “config/resources/nls/tablemetadata” with the
keys and values.

ROW_ID Unique identifier for each record in a table.

SERIAL_NUMBER_REQUIRED Flag to enable serial numbers on the user interface. Supported
values are ‘Y’ to enable and ‘N’ to disable.

MAX_COLUMNS Property to limit the number of columns a PDF can show. Default is 6
which can be changed by updating this property.

Example

Insert into DIGX_CM_TABLE_METADATA

(TABLE_CODE,SUPPORTED_DOWNLOAD_TYPES,PAGINATION_TYPE,ACTION_COMPONENT,TABLE
_HEADER,ROW_ID,
SERIAL_NUMBER_REQUIRED,MAX_COLUMNS)
 values ('ManageBrandBrand','csv,pdf','S','theme-config/review-
theme',
'brand,brand','brandId',null,4);

Chapter 9
Add configurations in the Metadata Tables

9-3

2. DIGX_CM_COLUMN_METADATA
Stores information about columns available for a given table.

For more information on fields, refer to the field description table.

Table 9-2 Stores Information - Field Description

Property Description

TABLE_METADATA_ID Unique identifier for each table. Many to one relationship to
DIGX_CM_TABLE_METADATA table and TABLE_CODE column.

NAME The name of the column with NLS support. Maintain the file with the
name "<TABLE_CODE>.properties" at the location "config/
resources/nls/tablemetadata" along with the corresponding keys and
values. Avoid creating duplicate files, as this file already contains the
TABLE_HEADER for the DIGX_CM_TABLE_METADATA table.

COMPONENT_ID Custom component created for user interface. Used to add custom
formatting for specific columns. Default value is ‘null’.

DATATYPE The supported datatypes are String, Number, Date, Currency and
Complex. Similar to COMPONENT_ID, which is purely use for UI
rendering; Datatypes is for report generation.

PATH For value fetching, use the data path. The root path of a record is
represented by the dot operator ('.'). Use the root path if the entire
data object is required. Alternatively, use specific JSON paths when
only specific values are required, example "Person.name", here we
read name from the Person object.

FIXED To view column on some condition, Supported values are ‘Y’ to
enable and ‘N’ to disable.

SORTABLE Flag to enable serial numbers on the user interface. Supported
values are ‘Y’ to enable and ‘N’ to disable.

DOWNLOADABLE The column support for download. Supported values are ‘Y’ to
enable and ‘N’ to disable.

MIN_WIDTH The minimum width of the column.

MAX_WIDTH The maximum width of the column.

SEQUENCE_NO The position of the column in the table.

LENGTH The width of the column. The sum of all column lengths for a table
code should be 100 to avoid overflow and underflow of table content.
If not mentioned framework will auto size the widths.

Example

Insert into DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values

('ManageBrandBrandthemeName','ManageBrandBrand','themeName',null,'String','
brandName','Y','Y','Y',1,null);Insert into DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values

Chapter 9
Add configurations in the Metadata Tables

9-4

('ManageBrandBrandthemeDesc','ManageBrandBrand','themeDesc',null,'String','
brandDescription','N','Y','Y',2,null);Insert into DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values

('ManageBrandBranddateCreated','ManageBrandBrand','dateCreated','formattedD
ate','Date','creationDate','Y','Y','Y',3,40);Insert into
DIGX_CM_TABLE_METADATA

(ID,TABLE_METADATA_ID,NAME,COMPONENT_ID,DATATYPE,PATH,FIXED,SORTABLE,DOWNLO
ADABLE,SEQUENCE_NO,LENGTH)
 values
 ('ManageBrandBrandactions','ManageBrandBrand','actions','theme-
config/theme-actions','String','brandId','N','Y','Y',4,null);

9.3 Custom Datatypes for Report Download
This topic provides information on Custom Datatypes for Report Download.

The framework supports various data types, including String, Number, Date, and Complex. For
any unsupported data type, the framework looks for corresponding XSL templates to handle
report generation.

To create your own custom data types, follow these steps:

1. Identify the data type string to for using in the DIGX_CM_COLUMN_METADATA table. For
example, 'CustomDateType' can be a string used to create special handling for dates.
Alphanumeric combinations like 'CustomDateType#1' for additional variations, where each
type corresponds to its own set of templates.

2. Create a custom template at the following location:

config\resources\com\ofss\digx\framework\list\universal\templates
 <?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">
 <xsl:template name="CustomDateType">
 <xsl:param name = "data" />
 <fo:block>
 <!-- Add handling here --
>
 <!-- <xsl:value-of select="$data/calendarDayOfWeek" />
-->
 </fo:block>
 </xsl:template>
 </xsl:stylesheet>

Chapter 9
Custom Datatypes for Report Download

9-5

The above is a sample template for your reference. We save it as CustomDateType.xsl at
the given location. Each template has a data parameter as input, which contains the data
provided based on the path specified in the maintenance. The above template selects the
'calendarDayOfWeek' value and displays it in the PDF from the available data.

3. Import the template in config\resources\com\ofss\digx\framework\list\universal\loader.xsl
and add the selection criteria.

<?xml version="1.0"
 encoding="UTF-8"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">
 <!-- Import template -->
 <xsl:include
 href="resources/com/ofss/digx/framework/list/universal/templates/
CustomDateType.xsl"/>
 <xsl:template name="loader"> <xsl:param name =
"dataType" /> <xsl:param name = "data" />
<xsl:choose> <!-- Add selection critria here and call
template
 -->
 <xsl:when test="$dataType
 = 'CustomDateType'"> <xsl:call-template
name="CustomDateType"
 select="$data"/> </xsl:when> <!--
default handling --> <xsl:otherwise>
<fo:block> <xsl:value-of select="$data"
 /> </fo:block> </
xsl:otherwise> </xsl:choose>
 </xsl:template>
 </xsl:stylesheet>

4. Steps for CSV templates:
The steps remain the same as mentioned above, with the difference being the storage
location of templates and the loader file. The templates are at
'config\resources\com\ofss\digx\framework\list\universal\csv\templa
tes', and the loader file should be
'config\resources\com\ofss\digx\framework\list\universal\csv\loader
.xsl'.

9.4 Adding content before and after table in PDF Reports
This topic provides information on Adding content before and after table in PDF Reports.

1. Create a template with slots at location “config\resources\uidownload\templates\pdf“
The file should be named with tableCode example ManageBrandBrand.xsl where
ManageBrandBrand is tablecode.

Use the below starter template,

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0" >

Chapter 9
Adding content before and after table in PDF Reports

9-6

<xsl:include href="resources/com/ofss/digx/framework/list/universal/utils/ui-
download.xsl" />

<xsl:template match="/">

<xsl:call-template name="ui-download">

<xsl:with-param name="data" select="." />

</xsl:call-template>

</xsl:template>

<xsl:template name="top-slot"></xsl:template>

<xsl:template name="bottom-slot"></xsl:template>

</xsl:stylesheet>

2. Now new content can be added to the top-slot and bottom-slot templates, example
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0" >

<xsl:include href="resources/com/ofss/digx/framework/list/universal/utils/ui-
download.xsl" />

<xsl:template match="/">

<xsl:call-template name="ui-download">

<xsl:with-param name="data" select="." />

</xsl:call-template>

</xsl:template>

<xsl:template name="top-slot">

<xsl:param name="data" />

<fo:block>

<xsl:value-of select="$data/status/apiType" />

</fo:block>

</xsl:template>

<xsl:template name="bottom-slot">

<xsl:param name="data" />

<fo:block>

<xsl:value-of select="$data/status/apiType" />

</fo:block>

</xsl:template>

</xsl:stylesheet>

3. The complete response object can be accessed using the $data param, excluding the
items.
{

"status": {

Chapter 9
Adding content before and after table in PDF Reports

9-7

"result": "SUCCESSFUL",

"contextID": "0063eZOykwSAHReEtbToWH00E9EP000CXx",

"message": {

"type": "INFO"

},

"apiType": "brand"

},

"brandDTOs": []

}

Chapter 9
Adding content before and after table in PDF Reports

9-8

10
Package and Deploy Customisations

• Base product packaging
This topic provides information on Base product packaging.

• Customisation packaging
This topic provides information on Customisation packaging.

10.1 Base product packaging
This topic provides information on Base product packaging.

Before we look at how to package service extensions we need to understand the packaging of
the base product.

Below we showcase project structure of an OBDX base module. We take approvals as an
example.

1. Main-module-project.

2. Sub-project containing all the schedulers required by the module.

3. Sub-project containing all the services comprising the module. (Majority extensions fall
under this subproject).

4. Sub-project containing all the Data Transfer Objects used in other sub-projects

5. Sub-project containing validators used to validate Data Transfer Objects facilitating input to
OBDX.

6. Sub-project containing classes used to make cross module calls.

7. Sub-project exposing endpoints to UI for end user to interact with OBDX.

10-1

8. Subproject exposing endpoints used by other module’s services to consume the services
of this module via REST.

9. Sub-project containing JMS listeners required for the functioning of this module.

Each of the above listed subprojects are gradle projects which are then built into their
respective jars. In case of the example shown above the jars artifacts resulting from the build
are as given below.

1. com.ofss.digx.app.<<moduleName>>.scheduler.jar eg.
com.ofss.digx.app.approval.scheduler.jar

2. com.ofss.digx.app.<<moduleName>>.service.jar eg.
com.ofss.digx.app.approval.service.jar

3. com.ofss.digx.app.<<moduleName>>.xface.jar eg. com.ofss.digx.app.approval.xface.jar

4. com.ofss.digx.app.<<moduleName>>.xface.validators.jar eg.
com.ofss.digx.app.approval.xface.validators.jar

5. com.ofss.digx.app.<<moduleName>>.adapter.jar eg.
com.ofss.digx.app.approval.adapter.jar

6. com.ofss.digx.appx.<<moduleName>>.endpoint.jar eg.
com.ofss.digx.appx.approval.endpoint.jar

7. com.ofss.digx.ixface.<<moduleName>>.endpoint.jar eg.
com.ofss.digx.ixface.approval.endpoint.jar

8. com.ofss.digx.jms.<<moduleName>>.listener.jar eg. com.ofss.digx.jms.approval.listener.jar

10.2 Customisation packaging
This topic provides information on Customisation packaging.

Customizations or extensions can be broadly classified into 2 as mentioned below

• Customizations in existing service layer without the need to expose a new customized
REST endpoint
This topic provides information on Customizations in existing service layer without the
need to expose a new customized REST endpoint.

• Customizations to add new war
This topic provides information on Customizations to add new war.

10.2.1 Customizations in existing service layer without the need to expose a
new customized REST endpoint

This topic provides information on Customizations in existing service layer without the
need to expose a new customized REST endpoint.

1. Building custom classes into customised jars:-
The majority customizations that fall into this category for example Pre-Post hooks, domain
and adapter extensions are done on artifacts present in the service jar mentioned in the
previous section namely com.ofss.digx.app.<<moduleName>>.service.jar. So the
corresponding extensions should be packaged in a jar named
com.ofss.digx.cz.app.<<moduleName>>.service.jar

Chapter 10
Customisation packaging

10-2

Note:

Similarily in case required artifacts related to extension classes get packaged into
corresponding cz jars as mentioned above. For example if for a requirement we
need to add a custom listener to a module say approval, the artifacts related to
these listeners are packaged in a jar named
com.ofss.digx.cz.jms.approval.listener.jar. This is depicted in the image below.

2. Adding customised jars as dependencies in build scripts:-
These custom jars can then be added to the war of the domain using the gradle scripts
provided in the installer as demonstrated below:

The patch set installer has the following folder structure

OBDX_Patch_Installer\installables\dist\Domainwise\wars
Taking ahead the current customization example we will refer module approval packaged
within domain digx-admin. Please refer the below mentioned file for module approval. (As
module approval is packaged in the domain named digx-admin)

OBDX_Patch_Installer\installables\dist\Domainwise\wars\digx-
admin\module.gradle

There is a line in the above file as shown below:

apply from: "../../cz/wars/digx-approval/module-cz.gradle"

Chapter 10
Customisation packaging

10-3

The highlighted line above refers to the file present inside the installer at the location given
below.

OBDX_Patch_Installer\installables\dist\Domainwise\cz\wars\digx-
approval\module-cz.gradle
So after customizations are done in a new jar say
com.ofss.digx.cz.app.approval.service.jar, this jar can be specified in this (module-
cz.gradle) file above as a dependency. Since dependencies in gradle are specified in
group:artifact:version format, we can specify the dependency of this customized jar as
below:

warLibs
"com.ofss.digx.cz.module.approval:com.ofss.digx.cz.app.account.service:$libs_digxVersio
n"

3. a. Place custom jars in the folder such that it gets picked by the gradle script and
is packaged within the domain war:-
So that the above specified dependency of the customized jar gets resolved we need
to place it in the folder structure as per group:artifact:version format.The repository
defined for our base and customized product jars is

OBDX_Patch_Installer\installables\gradle-repo

Since in the above examplegroup isas mentioned below

com.ofss.digx.cz.module.approval

So
wewillcreateafolderstructure\com\ofss\digx\cz\module\approvalinsideOBDX
_Patch_Installer\installables\gradle-repo

Now coming toartefact

com.ofss.digx.cz.app.app roval.service

For this we will create a folder named /
com.ofss.digx.cz.app.approval.service inside the above mentioned folder.

Finally the version is

Chapter 10
Customisation packaging

10-4

$libs_digxVersion

This version is a variable. The value of this variable is defined in a file

OBDX_Patch_Installer\core\config\gradle.properties.
If the value of the variable is as shown below

Create a folder named 22.2.0.0.0-SNAPSHOT inside the folder created for artefact
above.

Consequently the final folder structure should be as below

OBDX_Patch_Installer\installables\gradle-
repo\com\ofss\digx\cz\module\approval\
com.ofss.digx.cz.app.approval.service\22.2.0.0.0-SNAPSHOT

Place your customised jar inside the above folder such that it gets picked by the gradle
script and packaged inside the digx-admin war

10.2.2 Customizations to add new war
This topic provides information on Customizations to add new war.

1. Create module specific folder in dist\cz\wars (typically 'digx-cz-<<ModuleName>>')

2. Ensure all the artifacts like src, build.gradle, settings.gradle, module.gradle of modules are
present.

3. Provide all the dependency, like other module jars and third party jars in module.gradle.
The libraries which are part of digx-shared-lib should not be included here.

4. Once the dependencies are included, build the war using gradle build command. It will
generate the module war in wars\digx-cz-<<ModuleName>>\build\libs folder.

5. Ensure the generated war has all the necessary components and deploy the same as an
application on the server. Also make sure that the module name is correctly present in
application.properties with following property name.

Chapter 10
Customisation packaging

10-5

6. spring.application.name=digx-cz-<ModuleName>

Chapter 10
Customisation packaging

10-6

11
Messaging System Integration for OBDX

• Overview
This topic provides information on Overview.

• Kafka
This topic provides information on Kafka.

• JMS
This topic provides information on JMS.

• Consuming New External Kafka Events
This topic provides information on Consuming New External Kafka Events.

11.1 Overview
This topic provides information on Overview.

OBDX now supports Apache Kafka as a messaging system in addition to JMS. Kafka provides
high throughput, scalability, and fault tolerance, making it an excellent choice for event-driven
architectures. OBDX will work with either JMS or Kafka but not both simultaneously. This
section provides details on integrating Kafka and extending its functionalities and supporting
existing and any new JMS implementations.

Note:

The steps in this document for Kafka integration, producer, and consumer
creation should be followed only if Kafka is enabled.To enable Kafka, refer to the
section Enabling Kafka in OBDX of the document Oracle Banking Digital
Experience Installation Guide.

11.2 Kafka
This topic provides information on Kafka.

This section describes how to enable Kafka, implement Kafka producers and consumers and
override Kafka configurations.

• New Topic Creation With Producer and Consumer
This topic provides information on New Topic Creation With Producer and Consumer.

• Kafka Producer/Consumer Configurations
This topic provides information on Kafka Producer/Consumer Configurations.

11.2.1 New Topic Creation With Producer and Consumer
This topic provides information on New Topic Creation With Producer and Consumer.

1. Producing Kafka Events

11-1

In the application that produces events or messages,
com.ofss.digx.infra.events.MessageProducerUtility class should be used for producing
data to Kafka topics.

MessageProducerUtility :

For more information on fields, refer to the field description table.

Table 11-1 MessageProducerUtility

Modifier and type Method and description

Boolean sendMessage(String message, String topic)
produces message with provided data to the given topic.

message- specifies message to be sent. It is represented as a string.

topic- name of the topic to which the message will be sent.

Boolean sendMessage(Object key, String message, Class<K> keyClass,
String topic)
produces message with specified key and data to the given topic.

key - The key object associated with the message. This key is used for
partitioning or routing the message within the topic (can be String,
Integer or null).

message- specifies message to be sent. It is represented as a string.

keyClass- The class type of the key object. This helps in serializing or
processing the key appropriately.

topic- name of the topic to which the message will be sent.

Boolean sendObjectMessage(Object message ,Class<T> eventClass, String
topic)
produces message with provided data to the given topic.

message- specifies value to be used in the message. Can be Avro
object or normal POJO.

eventClass - The class type of the message that is being sent to the
topic. This helps in serializing or processing the message appropriately.
Must be an Avro class if using Avro. If format is JSON, then it will be
class instance of the POJO.

topic- name of the topic to which the message will be sent.

Boolean sendObjectMessage(Object key, Object message, Class<K>
keyClass ,Class<T> eventClass, String topic)
produces message with specified key and data to the given topic.

key - The key object associated with the message. This key is used for
partitioning or routing the message within the topic (can be String,
Integer or null).

message- specifies value to be used in the message. Can be Avro
object or normal POJO.

keyClass- The class type of the key object. This helps in serializing or
processing the key appropriately.

eventClass - The class type of the message that is being sent to the
topic. This helps in serializing or processing the message appropriately.
Must be an Avro class if using Avro. If format is JSON, then it will be
class instance of the POJO.

topic- name of the topic to which the message will be sent.

Sample Producer code:

JMSutility and TopicUtility code to be replaced by below snippet.

Chapter 11
Kafka

11-2

Example when using Avro data format

MessageProducerUtility.getInstance().sendObjectMessage(policyMapDTO,
PolicyMap.class, POLICIES_TOPIC);

Example when using Byte array data format

MessageProducerUtility.getInstance().sendObjectMessage(policyMapDTO,
byte[].class, POLICIES_TOPIC);

Example when using String data format

MessageProducerUtility.getInstance().sendMessage(policyMapDTO,
POLICIES_TOPIC);

Add below dependencies in build.gradle of the gradle project from where you are producing or
publishing the Kafka message.

implementation
"com.ofss.digx.infra:com.ofss.digx.infra.events:$libs_digxVersion"

2. Consuming Kafka Events

For implementing consumers, below steps need to be performed.

1. Creating Consumer project

• Create a new jar for kafka consumer for your module
Add this in the module's settings.gradle.

Add the below dependencies in build.gradle.

implementation "org.slf4j:slf4j-api:$libs_slf4jVersion" implementation
 "org.apache.avro:avro:$libs_avroVersion" implementation

"com.ofss.digx.infra:com.ofss.digx.infra.events:$libs_digxVersion"

2. Extending Consumer Classes
Implement own consumers by extending one of the provided consumer classes:

• com.ofss.digx.infra.events.kafka.consumer.StringConsumer

• com.ofss.digx.infra.events.kafka.consumer.AvroConsumer

• com.ofss.digx.infra.events.kafka.consumer.ByteArrayConsumer.
The choice of class depends on the data type present in the Kafka message.

AvroConsumer: Extend this class if the data to be consumed is of Avro type.

StringConsumer: Extend this class if the data to be consumed is of String type.

ByteArrayConsumer: Extend this class if the data to be consumed is of byte array
type.

All consumer classes - StringConsumer, ByteArrayConsumer and AvroConsumer are
generic classes represented as AbstractConsumer<K, T, V>, where:

– K: The type of the key. It can be String, Integer, or null.

Chapter 11
Kafka

11-3

– T: The type of the message sent by the topic.

– V: The type of object to which the message is converted for processing.

3. Override Methods
topicName(): Specify the name of the topic the consumer should listen to. Returns String.

consumerGroup(): Specify the consumer group name. Returns String. The consumer
groupname in each consumer should be different in case there are multiple consumers for
the same producer.

enableSeparateConsumerGroupsPerServer(): When true, each instance of the
consumer on each server creates its own consumer group. When false, all instances of
this consumer across all servers share the same consumer group. Default is false if not
overriden.

ifFilteredConsumer(): Return true if :

• The consumer is part of a shared library used in multiple WARs.

• The Kafka event should only be processed if a particular filter criteria sent by the
producer is supported by the consumer's application.

In simple terms, this ensures that a consumer processes only relevant events based on
the filter.

If ifFilteredConsumer() is set to return true, you need to pass filter in headers at producer
side while sending Kafka event.

Sample producer code:

Map<String, String> headers = new HashMap<>();headers.put("API_TYPE",
detailDTO.getApiType());
messageProducerUtility.sendObjectMessageWithFilter(null, detailDTO,
String.class, byte[].class,
MULITPLE_TRANSACTION_SERVICE_INVOCATION_QUEUE, detailDTO.getApiType(),
headers);

Inside the implementation of IMessageProcessor called from your consumer, override the
method process(K key, V data, Map<String, String> headers)

From the headers, you can fetch the filter criteria and evaluate the further processing logic.

run(): Responsible for initiating the message consumption process. Within the run method,
callthe consume method with an instance of IMessageProcessor to handle the processing
of each consumed message.

4. Consumer Group Size Configuration

• Purpose : Defines the number of consumer instances within a consumer group and
is useful for scaling when multiple partitions are configured for a topic.

• Storage : Existing consumer group size configurations are maintained in the
PROP_VALUEcolumn of the table DIGX_FW_CONFIG_ALL_B.

• Naming pattern : <CONSUMER_GROUP_NAME>_CONSUMER_GROUP_SIZE
Example : 'PoliciesTopicGroup_CONSUMER_GROUP_SIZE'

• Adding a New Consumer Group Entry : If a bank or consulting firm increases their
topic partition count and wants to scale their consumers accordingly, they should add a
configuration entry following the existing pattern. If not added, default will be 1.

Chapter 11
Kafka

11-4

Example SQL Insert Statement:

Insert into DIGX_FW_CONFIG_ALL_B

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMA
RY_TEXT,

CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS
,OBJECT_VERSION_NUMBER,
 EDITABLE,CATEGORY_DESCRIPTION)
 values
('PoliciesTopicGroup_CONSUMER_GROUP_SIZE','KAFKA_CONFIG','1','N',null,'c
onsumer
 group size for
PoliciesTopic','ofssuser',sysdate,'ofssuser',sysdate,'A',1,'Y',
 'PoliciesTopicGroup_CONSUMER_GROUP_SIZE');Consumer group size
as per

• Consumer group size as per “enableSeparateConsumerGroupsPerServer” flag :
Scenario 1: enableSeparateConsumerGroupsPerServer = true

– Each server instance will create its own consumer group.

– Max consumers per group = Number of topic partitions.

– Example :

Total partitions = 10
Managed servers = 2
Max consumers in a group = 10
Recommended consumer group size = Up to 10 per server

Scenario 2: enableSeparateConsumerGroupsPerServer = false

* All instances of a particular consumer belong to the same consumer group.

* The number of consumers per server should be calculated as
Total Partitions ÷ Number of Managed Servers

* Example :

Total partitions = 10
Managed servers = 2
Max consumers in a group = 10
Recommended consumer group size = Up to 5 per server

Note:

The consumer group size should not exceed the partition count of
the topic.

5. Creating SPI Entry for Consumer
A file named com.ofss.digx.infra.events.kafka.consumer.IConsumer should be created
in resources/META-INF/services in com.ofss.digx.cz.kafka.{module}.consumer and
the entry of the consumer class has to be provided in this file.

3. Implementing Event Processing Logic

Chapter 11
Kafka

11-5

• com.ofss.digx.infra.events.processor.IMessageProcessor

This interface is designed to support both JMS and Kafka. Implementing this interface
provides a common business logic layer to ensure maintainability, code reusability and
consistent processing approach across messaging systems.

• Write a class implementing com.ofss.digx.infra.events.processor.IMessageProcessor
in your Gradle project. Inside this class, override the process method and write the
message or event processing logic. This class has to be invoked from the Kafka consumer
and JMS listener classes. Make sure the project’s JAR file is a part of the class-path of the
application where the consumer is defined.
IMessageProcessor<K,V>

For more information on fields, refer to the field description table.

Table 11-2 IMessageProcessor<K,V>

Modifier and type Method and description

Void process(K key, V data)
processes messages from listener (JMS) or consumer (Kafka)

key - The key object associated with the message

data - The data to be processed.

Void default process(K key, V data, Map<String, String>
headers)processes messages from listener (JMS) or consumer
(Kafka)
Default method. Provides event headers.

key - The key object associated with the message

data - The data to be processed.

headers - Event headers associated with every message

Example class extending ByteArrayConsumer and using IMessageProcessor
implementation which will be used to consume data from Kafka topic.

Sample Kafka byte array consumer code

package com.ofss.digx.kafka.sms.consumer.authorization.policy; import
com.ofss.digx.app.sms.dto.authorization.policy.PolicyMapDTO;import

com.ofss.digx.app.sms.processors.authorization.policy.PoliciesMessageProces
sor;import com.ofss.digx.infra.events.kafka.consumer.AvroConsumer;
import org.slf4j.Logger;import org.slf4j.LoggerFactory; public class
PoliciesTopicConsumer extends ByteArrayConsumer<String, byte[],
PolicyMapDTO>
 {
private static final String
 THIS_COMPONENT_NAME = PoliciesTopicConsumer.class.getName();
private static final Logger logger =
LoggerFactory.getLogger(THIS_COMPONENT_NAME);
private static final String POLICIES_TOPIC = "PoliciesTopic";
private static final String POLICIES_TOPIC_GROUP =
"PoliciesTopicGroup";
public PoliciesTopicConsumer() throws Exception
{
super(String.class, byte[].class,
 PolicyMapDTO.class);
}

Chapter 11
Kafka

11-6

@Override public String topicName()
 {
return POLICIES_TOPIC;
}
@Override public String consumerGroup()
 {
return POLICIES_TOPIC_GROUP;
}
@Override public boolean
 enableSeparateConsumerGroupsPerServer()
{
return true;
}
@Override public void run()
{
logger.info("Entering into
run method of {}", THIS_COMPONENT_NAME);
consume(new PoliciesMessageProcessor());
logger.info("Exiting from run method of {}", THIS_COMPONENT_NAME);
}
}

Example class implementing IMessageProcessor<K,V>

package com.ofss.digx.app.sms.processors.authorization.policy;
import com.ofss.digx.app.sms.dto.authorization.policy.PolicyMapDTO;
import
com.ofss.digx.app.sms.service.authorization.provider.RoleTransactionAccessS
ervice;
import com.ofss.digx.infra.exceptions.Exception;
import com.ofss.digx.infra.events.processor.IMessageProcessor;import
org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class PoliciesMessageProcessor implements IMessageProcessor<String,
PolicyMapDTO>
{
/** * Stores the entity name represented by this {@code Class} object
as a {@code String} */
private static final String THIS_COMPONENT_NAME =
PoliciesMessageProcessor.class.getName();
private static final transient Logger logger =
LoggerFactory.getLogger(THIS_COMPONENT_NAME);
@Override public void process(String key, PolicyMapDTO data)
{
try {
if (!data.getValues().isEmpty())
{
RoleTransactionAccessService cacheLoader =
RoleTransactionAccessService.getInstance(null);
cacheLoader.updateResourceCache(data.getValues());
}
}
catch (Exception e)
{
logger.error("Exception encountered while invoking process method of

Chapter 11
Kafka

11-7

{}",
THIS_COMPONENT_NAME, e);
}
}
}

11.2.2 Kafka Producer/Consumer Configurations
This topic provides information on Kafka Producer/Consumer Configurations.

OBDX provides some default configurations for Kafka for Broker settings, partitioning and
replication, consumer group size, etc. maintained in the table DIGX_FW_CONFIG_ALL_B with
category_id KAFKA_CONFIG. The configurations by default will be applicable to all producers
and consumers.

1. Generic Configurations

Below mentioned are the generic configurations (PROP_ID) and their default values
(PROP_VALUE). These can be overridden if required, by updating them in the table.

For more information on fields, refer to the field description table.

Table 11-3 (PROP_ID) and their default values

PROP_ID Default PROP_VALUE Description

bootstrap.servers localhost:8080 Specifies the Kafka broker(s) that
consumers and producers should
connect to.

enable.auto.commit true Determines whether the consumer's
offset is automatically committed.

auto.commit.interval.ms 5000 The frequency (in milliseconds) at which
the consumer commits offsets when
auto-commit is enabled.

auto.offset.reset latest Defines the behavior when a consumer
starts reading from a topic. Options:

earliest: Read from the beginning of the
log.

latest: Read only new messages.

CONSUMER_POLL_TIMEO
UT_MS

2000 The maximum time (in milliseconds) a
consumer waits for records when polling
from Kafka.

Apart from the above mentioned properties, any other producer and consumer configuration
provided by Kafka can also be overridden by adding the respective entry in the table
DIGX_FW_CONFIG_ALL_B.

2. Changing Topic Level Configurations

Bank can also override any producer and consumer configuration for a particular topic with
their custom values instead of the default ones, by adding an entry in the table
DIGX_FW_CONFIG_ALL_B in the column PROP_ID with the pattern TOPIC_NAME@CONFIGURATION.

For example,

Insert into DIGX_FW_CONFIG_ALL_B

Chapter 11
Kafka

11-8

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEX
T,
CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS,OBJEC
T_VERSION_NUMBER,
EDITABLE,CATEGORY_DESCRIPTION)
 values('structure-
createdAndAuthorized@auto.offset.reset','KAFKA_CONFIG','latest','N',null,'Auto
 offset reset','ofssuser'sysdate,'ofssuser',sysdate,'A',1,'Y', 'Auto
offset reset
 ');

11.3 JMS
This topic provides information on JMS.

JMSUtility and TopicUtility is now deprecated.MessageProducerUtilityshould be used for
producing messages to JMS destinations. MessageProducerUtility requires entries of the
JMS destinations to be present in the table DIGX_FW_DESTINATION_METADATA.

• For any new as well as existing customized JMS queues or topics, Please ensure to add
entries in this table with relevant metadata for topic/queue maintenance. The table has
three columns:

– DESTINATION: The name of the topic or queue.

– CONNECTION_FACTORY: The connection factory used.

– DESTINATION_TYPE: The type (e.g., topic or queue).

For example,

INSERT INTO DIGX_FW_DESTINATION_METADATA values
('PoliciesTopic','POLICIESQCF', 'TOPIC');

• Add below dependency to build.gradle of the JMS listener project.

implementation
 "com.ofss.digx.infra:com.ofss.digx.infra.events:$libs_digxVersion"

• For message processing logic, create a class implementing
com.ofss.digx.infra.events.processor.IMessageProcessor interface, override the
process method and call this method from the JMS listener class. Refer Section3:
Implementing Event Processing Logicof New Topic Creation With Producer and
Consumer chapter for the same.

• Sample code for JMS listener

package com.ofss.digx.jms.sms.listener.authorization.policy;
import com.ofss.common.platform.server.ServerPlatformUtils;
import com.ofss.digx.app.sms.dto.authorization.policy.PolicyMapDTO;
import
com.ofss.digx.app.sms.processors.authorization.policy.PoliciesMessageProces
sor;
import com.ofss.digx.infra.jms.listener.IJMSTopicListener;
import org.slf4j.Logger;import org.slf4j.LoggerFactory;
import javax.jms.JMSException;import javax.jms.Message;
import javax.jms.ObjectMessage;

Chapter 11
JMS

11-9

import java.io.Serializable;
public class PoliciesTopicListener implements IJMSTopicListener
{
/** * Stores the name of the entity(class)represented by this {@code
Class} object * as a {@code String} */
private static final String THIS_COMPONENT_NAME =
PoliciesTopicListener.class.getName();
private static final transient Logger logger =
LoggerFactory.getLogger(THIS_COMPONENT_NAME);
/** * Property which stores the topic JNDI name. */
private static final String POLICIES_TOPIC = "PoliciesTopic";
/** * Property which stores the topic connection factory JNDI
name. */
private static final String POLICIES_QCF = "POLICIESQCF";
private final PoliciesMessageProcessor processor = new
PoliciesMessageProcessor();
@Override public String getConnectionFactoryName()
 {
return getJNDIName(POLICIES_QCF);
}
@Override public String getTopicName()
 {
return getJNDIName(POLICIES_TOPIC);
}
@Override public void onMessage(Message message)
 {
logger.debug("Entered into onMessage() of policy topic listener in class
{} ",
 THIS_COMPONENT_NAME);
 Serializable obj = null;
if (message instanceof ObjectMessage)
{
ObjectMessage objMessage = (ObjectMessage)message;
try {
obj = objMessage.getObject();
if (obj instanceof PolicyMapDTO)
{
 @SuppressWarnings("unchecked")
 PolicyMapDTO applicationRoles = (PolicyMapDTO)
obj;
 processor.process(null, applicationRoles);
 }
}
catch (JMSException |
 ClassCastException e)
{
 logger.error("Exception encountered while invoking the service
{}
in onMessage",
 THIS_COMPONENT_NAME, e);
}
catch(java.lang.Exception e)
{
 logger.error("Exception encountered while invoking the service
{}
in onMessage",

Chapter 11
JMS

11-10

 THIS_COMPONENT_NAME, e);
}
 }
}
private String getJNDIName(String name)
 {
return
ServerPlatformUtils.detectServerPlatform().platformJNDIName(name);
}
}

11.4 Consuming New External Kafka Events
This topic provides information on Consuming New External Kafka Events.

• For use cases where any new external Kafka topic needs to be listened to, a new
consumer class can be created by following the steps outlined in the Section: 2.
Consuming Kafka Events of Kafka chapter of this document. Additionally, this class must
implement the com.ofss.digx.infra.events.kafka.consumer.IKafkaConsumable
interface.

• For this Topic, new entries must be added in the table DIGX_FW_CONFIG_ALL_B as
mentioned in the document Oracle Banking Digital Experience Installation Guide in the
section OBDX Pre-defined External Kafka Topic Configurations. Apart from these, any
other Producer and Consumer properties defined by Kafka can also be added for the Topic
in this table.

For Example,

Insert into DIGX_FW_CONFIG_ALL_B

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEX
T,CREATED_BY,CREATION_DATE,
LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS,OBJECT_VERSION_NUMBER,EDITABLE
,CATEGORY_DESCRIPTION)
 values
('externalSystemAlertMessage@bootstrap.servers','KAFKA_CONFIG',
'ofss-
mum-645.snbomprshared1.gbucdsint02bom.oraclevcn.com:9092','N',null,'Kafka
props','ofssuser',sysdate,
'ofssuser',sysdate,'A',1,'Y','Kafka props');
Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,
SUMMARY_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT
_STATUS,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)
 values
('externalSystemAlertMessage@sasl.jaas.config','KAFKA_CONFIG','org.apache.kafk
a.common.security.scram.ScramLoginModule
 required username="obedx" password="obedx-secret";','N',null,'Kafka
props','ofssuser',sysdate,'ofssuser',sysdate,'A',1,'Y','Kafka props');
Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEX
T,CREATED_BY,CREATION_DATE,
LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS,OBJECT_VERSION_NUMBER,EDITABLE
,CATEGORY_DESCRIPTION)

Chapter 11
Consuming New External Kafka Events

11-11

values('externalSystemAlertMessage@sasl.mechanism','KAFKA_CONFIG','SCRAM-
SHA-256','N',null,
'Kafka props','ofssuser',sysdate,'ofssuser',sysdate,'A',1,'Y','Kafka props');
Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEX
T,
CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS,OBJEC
T_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)
 values
('externalSystemAlertMessage@security.protocol','KAFKA_CONFIG','SASL_SSL','N',
null,
'Kafka props','ofssuser',sysdate,'ofssuser',sysdate,'A',1,'Y','Kafka props');
Insert into DIGX_FW_CONFIG_ALL_B
(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,
SUMMARY_TEXT,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT
_STATUS,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)

values('externalSystemAlertMessage@ssl.truststore.location','KAFKA_CONFIG','/
scratch/app/domain/obdx_domain/KafkaServerKeystore.jks','N',null,'Kafka
 props','ofssuser',sysdate,'ofssuser',sysdate,'A',1,'Y','Kafka
props');Insert into DIGX_FW_CONFIG_ALL_B

(PROP_ID,CATEGORY_ID,PROP_VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEX
T,CREATED_BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,
OBJECT_STATUS,OBJECT_VERSION_NUMBER,EDITABLE,CATEGORY_DESCRIPTION)
 values
('externalSystemAlertMessage@ssl.truststore.password','KAFKA_CONFIG','orcl@123
','N',null,'Kafka
props','ofssuser',sysdate,'ofssuser',sysdate,'A',1,'Y','Kafka props');

Sample consumer implementation for external topic:

package com.ofss.digx.app.kafka.origination.consumer;
import
com.ofss.digx.app.origination.processors.ApplicationOnSubmitEventMessageProces
sor;
import com.ofss.digx.infra.events.kafka.consumer.IKafkaConsumable;
import com.ofss.digx.infra.events.kafka.consumer.StringConsumer;
import com.ofss.digx.infra.exceptions.Exception;import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class OriginationEventTopicConsumer extends StringConsumer<String,
String, String> implements IKafkaConsumable
{
 private String targetUnit;
public OriginationEventTopicConsumer()
throws Exception
{
super(String.class, String.class, String.class);
}
 private static final String THIS_COMPONENT_NAME =
OriginationEventTopicConsumer.class.getName();
 private static final Logger logger =
LoggerFactory.getLogger(THIS_COMPONENT_NAME);
private static final String OR_OBDX_TOPIC = "externalSystemAlertMessage";
 private static final String OR_GROUP_ID = "obdx-obo-consumer";

Chapter 11
Consuming New External Kafka Events

11-12

 @Override public String consumerGroup()
{
 return OR_GROUP_ID;
} @Override public String topicName()
{
 return OR_OBDX_TOPIC;
} @Override public boolean enableSeparateConsumerGroupsPerServer()
{
 return false;
} @Override public void run()
{ logger.info("Entering into run method of {}",
THIS_COMPONENT_NAME);
 consume(new ApplicationOnSubmitEventMessageProcessor());
 logger.info("Exiting from run method of {}", THIS_COMPONENT_NAME);
 }
}

Chapter 11
Consuming New External Kafka Events

11-13

Index

A
Adapter Tier, 3-25
Add / Modify Validations, 6-2
Add configurations in the Metadata Tables, 9-3
Adding a custom adapter, 3-29
Adding content before and after table in PDF

Reports, 9-6
Adding Error Message, 3-24
Adding New And Overriding Existing

Components, 6-1
Adding new business policy, 3-11
Adding New Domain, 3-23
Adding New Rule Criteria, 4-1
Architecture of GUI Tier, 2-1
Architecture of Service Tier, 5-1
Authentication Extensibility, 3-36

B
Background, 1-1
Base product packaging, 10-1
Business Policy, 3-10

C
Calling custom REST service, 6-3
Common Library, 7-2
Component Extensibility, 6-1
Configure Scheduler Class, 8-2
Consistent UI Download, 9-1
Consuming New External Kafka Events, 11-11
Core/Framework Libraries, 7-1
Create New Scheduler Class, 8-1
Custom Datatypes for Report Download, 9-5
Custom Domain Objects, 3-18
Custom Extension, 3-8
Customisation packaging, 10-2
Customizations in existing service layer without

the need to expose a new customized
REST endpoint, 10-2

Customizations to add new war, 10-5

D
Default Extension (Void Extension), 3-7

Dictionary, 3-16
Digx Scheduler Application, 8-1
Domain Extensions, 3-18

E
Error Messages, 3-24
Extending existing business policy, 3-15
Extensible Points in Approval, 4-1
Extensible Points in GUI Tier, 6-1
Extensible Points in Service Tier, 3-1
External System Adapters, 7-4

G
Guidelines, 3-2

H
Host adapter extension to populate pagination

informations, 3-31
HTTP Standards, 3-2

I
Implement IPaginable and add XmlRootElement

annotation on Response Object, 9-1
Implementing a Rule Criteria Handler, 4-2

J
JMS, 11-9

K
Kafka, 11-1
Kafka Producer/Consumer Configurations, 11-8

L
Libraries, 7-1

Index-1

M
Mapping Host Error Code To OBDX Error Code,

3-25
Messaging System Integration for OBDX, 11-1
Miscellaneous, 3-36
Modules, 7-2

N
New Topic Creation With Producer and

Consumer, 11-1

O
OBDX Libraries, 7-1
Objective, 1-1
Out of box seeding of policies, 3-35
Outbound web service extensions, 3-32
Overview, 11-1

P
Package and Deploy Customisations, 10-1

R
Registering a Rule Criteria Handler, 4-2
REST Tier, 3-1

S
Scope, 1-2
Security Customizations, 3-35
Sequence of events in service extension, 3-10
Service Extension Configurations, 3-9
Service Extension Executor Interface, 3-6
Service Extension Interface, 3-5
Service Extensions, 3-3
Service Provider Interface (SPI) Approach, 3-25
Structure, 1-3

T
Task Configurations, 3-36
Taxonomy Validations, 3-36
Theme and Brand, 6-1

Index

Index-2

	Contents
	Preface
	Purpose
	Audience
	Documentation Accessibility
	Critical Patches
	Diversity and Inclusion
	Conventions
	Related Resources
	Screenshot Disclaimer
	Acronyms and Abbreviations

	1 Objective and Scope
	1.1 Background
	1.2 Objective
	1.3 Scope
	1.4 Structure

	2 Architecture of GUI Tier
	3 Extensible Points in Service Tier
	3.1 REST Tier
	3.1.1 Guidelines
	3.1.2 HTTP Standards

	3.2 Service Extensions
	3.2.1 Service Extension Interface
	3.2.2 Service Extension Executor Interface
	3.2.3 Default Extension (Void Extension)
	3.2.4 Custom Extension
	3.2.5 Service Extension Configurations
	3.2.6 Sequence of events in service extension

	3.3 Business Policy
	3.3.1 Adding new business policy
	3.3.2 Extending existing business policy

	3.4 Dictionary
	3.5 Domain Extensions
	3.5.1 Custom Domain Objects
	3.5.2 Adding New Domain

	3.6 Error Messages
	3.6.1 Adding Error Message
	3.6.2 Mapping Host Error Code To OBDX Error Code

	3.7 Adapter Tier
	3.7.1 Service Provider Interface (SPI) Approach
	3.7.2 Adding a custom adapter
	3.7.3 Host adapter extension to populate pagination informations

	3.8 Outbound web service extensions
	3.9 Security Customizations
	3.9.1 Out of box seeding of policies

	3.10 Taxonomy Validations
	3.11 Authentication Extensibility
	3.12 Miscellaneous
	3.12.1 Task Configurations

	4 Extensible Points in Approval
	4.1 Adding New Rule Criteria
	4.1.1 Adding New Rule Criteria
	4.1.2 Implementing a Rule Criteria Handler
	4.1.3 Registering a Rule Criteria Handler

	5 Architecture of Service Tier
	6 Extensible Points in GUI Tier
	6.1 Theme and Brand
	6.2 Component Extensibility
	6.2.1 Adding New And Overriding Existing Components
	6.2.2 Add / Modify Validations

	6.3 Calling custom REST service

	7 Libraries
	7.1 OBDX Libraries
	7.1.1 Core/Framework Libraries
	7.1.2 Common Library
	7.1.3 Modules
	7.1.4 External System Adapters

	8 Digx Scheduler Application
	8.1 Create New Scheduler Class
	8.2 Configure Scheduler Class

	9 Consistent UI Download
	9.1 Implement IPaginable and add XmlRootElement annotation on Response Object
	9.2 Add configurations in the Metadata Tables
	9.3 Custom Datatypes for Report Download
	9.4 Adding content before and after table in PDF Reports

	10 Package and Deploy Customisations
	10.1 Base product packaging
	10.2 Customisation packaging
	10.2.1 Customizations in existing service layer without the need to expose a new customized REST endpoint
	10.2.2 Customizations to add new war

	11 Messaging System Integration for OBDX
	11.1 Overview
	11.2 Kafka
	11.2.1 New Topic Creation With Producer and Consumer
	11.2.2 Kafka Producer/Consumer Configurations

	11.3 JMS
	11.4 Consuming New External Kafka Events

	Index

